到目前为止,我已经避免了测试多线程代码的噩梦,因为它似乎是一个太大的雷区。我想知道人们是如何测试依赖于线程的代码以获得成功执行的,或者人们是如何测试那些仅在两个线程以给定方式交互时才会出现的问题的?

对于今天的程序员来说,这似乎是一个非常关键的问题,恕我直言,将我们的知识集中在这个问题上是很有用的。


当前回答

看看我的相关答案在

为自定义Barrier设计一个Test类

它偏向于Java,但对选项进行了合理的总结。

总而言之(我认为),它不是使用一些花哨的框架来确保正确性,而是如何设计你的多线程代码。拆分关注点(并发性和功能性)有助于提高信心。测试引导的面向对象软件的发展比我能更好地解释一些选项。

静态分析和形式化方法(参见并发性:状态模型和Java程序)是一种选择,但我发现它们在商业开发中用处有限。

不要忘记,任何加载/浸泡风格的测试都很少能保证突出问题。

好运!

其他回答

有一些很好的工具。下面是一些Java的摘要。

一些好的静态分析工具包括FindBugs(提供了一些有用的提示)、JLint、Java Pathfinder (JPF & JPF2)和Bogor。

multithreaddtc是一个非常好的动态分析工具(集成到JUnit中),您必须在其中设置自己的测试用例。

IBM研究院的竞赛很有趣。它通过插入各种线程修改行为(例如sleep & yield)来检测你的代码,试图随机发现错误。

SPIN是对Java(和其他)组件建模的一个非常酷的工具,但是您需要一些有用的框架。它很难使用,但如果你知道如何使用它,它是非常强大的。相当多的工具在底层使用SPIN。

multithreaddtc可能是最主流的,但是上面列出的一些静态分析工具绝对值得一看。

听着,要做到这一点并不容易。我正在做一个本来就是多线程的项目。事件来自操作系统,我必须并发地处理它们。

处理测试复杂的多线程应用程序代码的最简单方法是:如果它太复杂而无法测试,那么您做错了。如果您有一个单独的实例,其中有多个线程作用于它,并且您无法测试这些线程相互踩在一起的情况,那么您的设计需要重做。它既简单又复杂。

有许多方法可以为多线程编程,以避免线程同时通过实例运行。最简单的方法是使所有对象都是不可变的。当然,这通常是不可能的。因此,您必须在设计中确定线程与同一实例交互的地方,并减少这些地方的数量。通过这样做,您可以隔离多线程实际发生的几个类,从而降低测试系统的总体复杂性。

但是您必须意识到,即使这样做,您仍然不能测试两个线程相互践踏的每一种情况。要做到这一点,您必须在同一个测试中并发地运行两个线程,然后准确地控制它们在任何给定时刻执行的行。你能做的就是模拟这种情况。但这可能需要您专门为测试编写代码,这充其量是迈向真正解决方案的半步。

测试代码是否存在线程问题的最好方法可能是对代码进行静态分析。如果您的线程代码没有遵循有限的线程安全模式集,那么您可能会遇到问题。我相信VS中的代码分析确实包含了一些线程的知识,但可能不多。

看,就目前的情况来看(可能还会持续很长一段时间),测试多线程应用程序的最佳方法是尽可能降低线程代码的复杂性。最小化线程交互的区域,尽可能地进行测试,并使用代码分析来识别危险区域。

一个简单的测试模式可以用于一些(不是所有!)用例,就是多次重复相同的测试。例如,假设你有一个方法:

def process(input):
    # Spawns several threads to do the job
    # ...
    return output

创建一堆测试:

process(input1) -> expect to return output1
process(input2) -> expect to return output2
...

现在将每个测试运行多次。

如果流程的实现包含一个微小的错误(例如死锁、竞态条件等),出现的概率为0.1%,那么运行1000次测试,则该错误至少出现一次的概率为64%。运行测试10000次,得到>99%的概率。

上周我花了大部分时间在大学图书馆学习并发代码的调试。核心问题是并发代码是不确定的。通常,学术调试可以分为三个阵营之一:

Event-trace/replay. This requires an event monitor and then reviewing the events that were sent. In a UT framework, this would involve manually sending the events as part of a test, and then doing post-mortem reviews. Scriptable. This is where you interact with the running code with a set of triggers. "On x > foo, baz()". This could be interpreted into a UT framework where you have a run-time system triggering a given test on a certain condition. Interactive. This obviously won't work in an automatic testing situation. ;)

现在,正如上面评论者所注意到的,您可以将并发系统设计成更确定的状态。然而,如果你做得不好,你就又回到了设计顺序系统的问题上。

我的建议是,专注于制定一个非常严格的设计协议,规定什么是线程,什么不是线程。如果你限制了你的接口,使元素之间的依赖最小化,那就容易多了。

祝你好运,继续解决这个问题。

Testing MT code for correctness is, as already stated, quite a hard problem. In the end it boils down to ensuring that there are no incorrectly synchronised data races in your code. The problem with this is that there are infinitely many possibilities of thread execution (interleavings) over which you do not have much control (be sure to read this article, though). In simple scenarios it might be possible to actually prove correctness by reasoning but this is usually not the case. Especially if you want to avoid/minimize synchronization and not go for the most obvious/easiest synchronization option.

我遵循的一种方法是编写高度并发的测试代码,以使潜在的未检测到的数据竞争有可能发生。然后我运行这些测试一段时间:)我曾经无意中看到一个演讲,一些计算机科学家展示了一个这样做的工具(根据规格随机设计测试,然后疯狂地运行它们,同时检查定义的不变量是否被破坏)。

顺便说一下,我认为测试MT代码的这一方面在这里还没有提到:确定可以随机检查的代码不变量。不幸的是,找到这些不变量也是一个相当困难的问题。此外,它们在执行期间可能不会一直保持,因此您必须找到/强制执行可以期望它们为真的执行点。将代码执行到这样的状态也是一个难题(并且本身可能会引起并发性问题)。呼,这太难了!

一些有趣的链接可供阅读:

确定性交错:允许强制执行某些线程交错,然后检查不变量的框架 jMock Blitzer:压力测试同步 assertConcurrent:压力测试同步的JUnit版本 测试并发代码:简要介绍两种主要方法:蛮力(压力测试)或确定性(使用不变量)