在Python多处理库中,是否有支持多个参数的pool.map变体?

import multiprocessing

text = "test"

def harvester(text, case):
    X = case[0]
    text + str(X)

if __name__ == '__main__':
    pool = multiprocessing.Pool(processes=6)
    case = RAW_DATASET
    pool.map(harvester(text, case), case, 1)
    pool.close()
    pool.join()

当前回答

如何获取多个参数:

def f1(args):
    a, b, c = args[0] , args[1] , args[2]
    return a+b+c

if __name__ == "__main__":
    import multiprocessing
    pool = multiprocessing.Pool(4) 

    result1 = pool.map(f1, [ [1,2,3] ])
    print(result1)

其他回答

如何获取多个参数:

def f1(args):
    a, b, c = args[0] , args[1] , args[2]
    return a+b+c

if __name__ == "__main__":
    import multiprocessing
    pool = multiprocessing.Pool(4) 

    result1 = pool.map(f1, [ [1,2,3] ])
    print(result1)

我认为以下内容会更好:

def multi_run_wrapper(args):
   return add(*args)

def add(x,y):
    return x+y

if __name__ == "__main__":
    from multiprocessing import Pool
    pool = Pool(4)
    results = pool.map(multi_run_wrapper,[(1,2),(2,3),(3,4)])
    print results

输出

[3, 5, 7]

另一种方法是将列表列表传递给单参数例程:

import os
from multiprocessing import Pool

def task(args):
    print "PID =", os.getpid(), ", arg1 =", args[0], ", arg2 =", args[1]

pool = Pool()

pool.map(task, [
        [1,2],
        [3,4],
        [5,6],
        [7,8]
    ])

然后可以用自己喜欢的方法构造一个参数列表。

这是我用来将多个参数传递给pool.imap fork中使用的单参数函数的例程的示例:

from multiprocessing import Pool

# Wrapper of the function to map:
class makefun:
    def __init__(self, var2):
        self.var2 = var2
    def fun(self, i):
        var2 = self.var2
        return var1[i] + var2

# Couple of variables for the example:
var1 = [1, 2, 3, 5, 6, 7, 8]
var2 = [9, 10, 11, 12]

# Open the pool:
pool = Pool(processes=2)

# Wrapper loop
for j in range(len(var2)):
    # Obtain the function to map
    pool_fun = makefun(var2[j]).fun

    # Fork loop
    for i, value in enumerate(pool.imap(pool_fun, range(len(var1))), 0):
        print(var1[i], '+' ,var2[j], '=', value)

# Close the pool
pool.close()

在官方文档中,它只支持一个可迭代的参数。在这种情况下,我喜欢使用apply_async。如果是你,我会:

from multiprocessing import Process, Pool, Manager

text = "test"
def harvester(text, case, q = None):
 X = case[0]
 res = text+ str(X)
 if q:
  q.put(res)
 return res


def block_until(q, results_queue, until_counter=0):
 i = 0
 while i < until_counter:
  results_queue.put(q.get())
  i+=1

if __name__ == '__main__':
 pool = multiprocessing.Pool(processes=6)
 case = RAW_DATASET
 m = Manager()
 q = m.Queue()
 results_queue = m.Queue() # when it completes results will reside in this queue
 blocking_process = Process(block_until, (q, results_queue, len(case)))
 blocking_process.start()
 for c in case:
  try:
   res = pool.apply_async(harvester, (text, case, q = None))
   res.get(timeout=0.1)
  except:
   pass
 blocking_process.join()