在Python多处理库中,是否有支持多个参数的pool.map变体?
import multiprocessing
text = "test"
def harvester(text, case):
X = case[0]
text + str(X)
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=6)
case = RAW_DATASET
pool.map(harvester(text, case), case, 1)
pool.close()
pool.join()
在官方文档中,它只支持一个可迭代的参数。在这种情况下,我喜欢使用apply_async。如果是你,我会:
from multiprocessing import Process, Pool, Manager
text = "test"
def harvester(text, case, q = None):
X = case[0]
res = text+ str(X)
if q:
q.put(res)
return res
def block_until(q, results_queue, until_counter=0):
i = 0
while i < until_counter:
results_queue.put(q.get())
i+=1
if __name__ == '__main__':
pool = multiprocessing.Pool(processes=6)
case = RAW_DATASET
m = Manager()
q = m.Queue()
results_queue = m.Queue() # when it completes results will reside in this queue
blocking_process = Process(block_until, (q, results_queue, len(case)))
blocking_process.start()
for c in case:
try:
res = pool.apply_async(harvester, (text, case, q = None))
res.get(timeout=0.1)
except:
pass
blocking_process.join()
对我来说,以下是一个简单明了的解决方案:
from multiprocessing.pool import ThreadPool
from functools import partial
from time import sleep
from random import randint
def dosomething(var,s):
sleep(randint(1,5))
print(var)
return var + s
array = ["a", "b", "c", "d", "e"]
with ThreadPool(processes=5) as pool:
resp_ = pool.map(partial(dosomething,s="2"), array)
print(resp_)
输出:
a
b
d
e
c
['a2', 'b2', 'c2', 'd2', 'e2']
这里有另一种方法,IMHO比提供的任何其他答案都更简单和优雅。
该程序有一个函数,它获取两个参数,打印它们并打印总和:
import multiprocessing
def main():
with multiprocessing.Pool(10) as pool:
params = [ (2, 2), (3, 3), (4, 4) ]
pool.starmap(printSum, params)
# end with
# end function
def printSum(num1, num2):
mySum = num1 + num2
print('num1 = ' + str(num1) + ', num2 = ' + str(num2) + ', sum = ' + str(mySum))
# end function
if __name__ == '__main__':
main()
输出为:
num1 = 2, num2 = 2, sum = 4
num1 = 3, num2 = 3, sum = 6
num1 = 4, num2 = 4, sum = 8
有关更多信息,请参阅python文档:
https://docs.python.org/3/library/multiprocessing.html#module-多处理工具
特别是要检查星图功能。
我使用的是Python 3.6,我不确定这是否适用于较旧的Python版本
为什么在文档中没有这样一个非常直接的例子,我不确定。
从Python 3.4.4中,您可以使用multiprocessing.get_context()获取上下文对象,以使用多个启动方法:
import multiprocessing as mp
def foo(q, h, w):
q.put(h + ' ' + w)
print(h + ' ' + w)
if __name__ == '__main__':
ctx = mp.get_context('spawn')
q = ctx.Queue()
p = ctx.Process(target=foo, args=(q,'hello', 'world'))
p.start()
print(q.get())
p.join()
或者你只是简单地替换
pool.map(harvester(text, case), case, 1)
具有:
pool.apply_async(harvester(text, case), case, 1)