我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。


当前回答

假设您希望在访问图中的每个节点时执行通知。简单的递归实现是:

void DFSRecursive(Node n, Set<Node> visited) {
  visited.add(n);
  for (Node x : neighbors_of(n)) {  // iterate over all neighbors
    if (!visited.contains(x)) {
      DFSRecursive(x, visited);
    }
  }
  OnVisit(n);  // callback to say node is finally visited, after all its non-visited neighbors
}

好的,现在你需要一个基于堆栈的实现,因为你的例子不起作用。例如,复杂的图形可能会导致程序的堆栈崩溃,您需要实现一个非递归版本。最大的问题是知道何时发出通知。

下面的伪代码可以工作(为了可读性,Java和c++混合使用):

void DFS(Node root) {
  Set<Node> visited;
  Set<Node> toNotify;  // nodes we want to notify

  Stack<Node> stack;
  stack.add(root);
  toNotify.add(root);  // we won't pop nodes from this until DFS is done
  while (!stack.empty()) {
    Node current = stack.pop();
    visited.add(current);
    for (Node x : neighbors_of(current)) {
      if (!visited.contains(x)) {
        stack.add(x);
        toNotify.add(x);
      }
    }
  }
  // Now issue notifications. toNotifyStack might contain duplicates (will never
  // happen in a tree but easily happens in a graph)
  Set<Node> notified;
  while (!toNotify.empty()) {
  Node n = toNotify.pop();
  if (!toNotify.contains(n)) {
    OnVisit(n);  // issue callback
    toNotify.add(n);
  }
}

它看起来很复杂,但发出通知所需的额外逻辑存在,因为您需要以相反的访问顺序通知- DFS从根开始,但在最后通知它,不像BFS实现非常简单。

看看下面的图表: 节点是s t v w。 有向边为: S ->t, S ->v, t->w, v->w, v->t。 运行你自己的DFS实现,访问节点的顺序必须是: W t v s 一个笨拙的DFS实现可能会首先通知t,这表明存在错误。DFS的递归实现总是最后到达w。

其他回答

http://www.youtube.com/watch?v=zLZhSSXAwxI

刚刚看了这个视频,并提出了实施方案。这对我来说似乎很容易理解。请评论一下。

visited_node={root}
stack.push(root)
while(!stack.empty){
  unvisited_node = get_unvisited_adj_nodes(stack.top());
  If (unvisited_node!=null){
     stack.push(unvisited_node);  
     visited_node+=unvisited_node;
  }
  else
     stack.pop()
}

只是想把我的python实现添加到长长的解决方案列表中。这种非递归算法具有发现和完成事件。


worklist = [root_node]
visited = set()
while worklist:
    node = worklist[-1]
    if node in visited:
        # Node is finished
        worklist.pop()
    else:
        # Node is discovered
        visited.add(node)
        for child in node.children:
            worklist.append(child)

如果你有指向父节点的指针,你可以在没有额外内存的情况下完成。

def dfs(root):
    node = root
    while True:
        visit(node)
        if node.first_child:
            node = node.first_child      # walk down
        else:
            while not node.next_sibling:
                if node is root:
                    return
                node = node.parent       # walk up ...
            node = node.next_sibling     # ... and right

注意,如果子节点存储为数组而不是通过兄弟指针,那么下一个兄弟节点可以通过以下方式找到:

def next_sibling(node):
    try:
        i =    node.parent.child_nodes.index(node)
        return node.parent.child_nodes[i+1]
    except (IndexError, AttributeError):
        return None
Stack<Node> stack = new Stack<>();
stack.add(root);
while (!stack.isEmpty()) {
    Node node = stack.pop();
    System.out.print(node.getData() + " ");

    Node right = node.getRight();
    if (right != null) {
        stack.push(right);
    }

    Node left = node.getLeft();
    if (left != null) {
        stack.push(left);
    }
}

使用ES6生成器的非递归DFS

class Node {
  constructor(name, childNodes) {
    this.name = name;
    this.childNodes = childNodes;
    this.visited = false;
  }
}

function *dfs(s) {
  let stack = [];
  stack.push(s);
  stackLoop: while (stack.length) {
    let u = stack[stack.length - 1]; // peek
    if (!u.visited) {
      u.visited = true; // grey - visited
      yield u;
    }

    for (let v of u.childNodes) {
      if (!v.visited) {
        stack.push(v);
        continue stackLoop;
      }
    }

    stack.pop(); // black - all reachable descendants were processed 
  }    
}

它与典型的非递归DFS不同,可以很容易地检测给定节点的所有可达后代何时被处理,并维护列表/堆栈中的当前路径。