我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。
当前回答
假设您希望在访问图中的每个节点时执行通知。简单的递归实现是:
void DFSRecursive(Node n, Set<Node> visited) {
visited.add(n);
for (Node x : neighbors_of(n)) { // iterate over all neighbors
if (!visited.contains(x)) {
DFSRecursive(x, visited);
}
}
OnVisit(n); // callback to say node is finally visited, after all its non-visited neighbors
}
好的,现在你需要一个基于堆栈的实现,因为你的例子不起作用。例如,复杂的图形可能会导致程序的堆栈崩溃,您需要实现一个非递归版本。最大的问题是知道何时发出通知。
下面的伪代码可以工作(为了可读性,Java和c++混合使用):
void DFS(Node root) {
Set<Node> visited;
Set<Node> toNotify; // nodes we want to notify
Stack<Node> stack;
stack.add(root);
toNotify.add(root); // we won't pop nodes from this until DFS is done
while (!stack.empty()) {
Node current = stack.pop();
visited.add(current);
for (Node x : neighbors_of(current)) {
if (!visited.contains(x)) {
stack.add(x);
toNotify.add(x);
}
}
}
// Now issue notifications. toNotifyStack might contain duplicates (will never
// happen in a tree but easily happens in a graph)
Set<Node> notified;
while (!toNotify.empty()) {
Node n = toNotify.pop();
if (!toNotify.contains(n)) {
OnVisit(n); // issue callback
toNotify.add(n);
}
}
它看起来很复杂,但发出通知所需的额外逻辑存在,因为您需要以相反的访问顺序通知- DFS从根开始,但在最后通知它,不像BFS实现非常简单。
看看下面的图表: 节点是s t v w。 有向边为: S ->t, S ->v, t->w, v->w, v->t。 运行你自己的DFS实现,访问节点的顺序必须是: W t v s 一个笨拙的DFS实现可能会首先通知t,这表明存在错误。DFS的递归实现总是最后到达w。
其他回答
虽然“使用堆栈”可能是人为的面试问题的答案,但实际上,它只是显式地做递归程序在幕后所做的事情。
递归使用程序内置堆栈。当你调用一个函数时,它将函数的参数推入堆栈,当函数返回时,它通过弹出程序堆栈来执行。
基于biziclops的ES6实现很棒的答案:
root = { text: "root", children: [{ text: "c1", children: [{ text: "c11" }, { text: "c12" }] }, { text: "c2", children: [{ text: "c21" }, { text: "c22" }] }, ] } console.log("DFS:") DFS(root, node => node.children, node => console.log(node.text)); console.log("BFS:") BFS(root, node => node.children, node => console.log(node.text)); function BFS(root, getChildren, visit) { let nodesToVisit = [root]; while (nodesToVisit.length > 0) { const currentNode = nodesToVisit.shift(); nodesToVisit = [ ...nodesToVisit, ...(getChildren(currentNode) || []), ]; visit(currentNode); } } function DFS(root, getChildren, visit) { let nodesToVisit = [root]; while (nodesToVisit.length > 0) { const currentNode = nodesToVisit.shift(); nodesToVisit = [ ...(getChildren(currentNode) || []), ...nodesToVisit, ]; visit(currentNode); } }
这是一个java程序的链接,显示DFS同时遵循递归和非递归方法,还计算发现和完成时间,但没有边对齐。
public void DFSIterative() {
Reset();
Stack<Vertex> s = new Stack<>();
for (Vertex v : vertices.values()) {
if (!v.visited) {
v.d = ++time;
v.visited = true;
s.push(v);
while (!s.isEmpty()) {
Vertex u = s.peek();
s.pop();
boolean bFinished = true;
for (Vertex w : u.adj) {
if (!w.visited) {
w.visited = true;
w.d = ++time;
w.p = u;
s.push(w);
bFinished = false;
break;
}
}
if (bFinished) {
u.f = ++time;
if (u.p != null)
s.push(u.p);
}
}
}
}
}
这里是完整的源代码。
Stack<Node> stack = new Stack<>();
stack.add(root);
while (!stack.isEmpty()) {
Node node = stack.pop();
System.out.print(node.getData() + " ");
Node right = node.getRight();
if (right != null) {
stack.push(right);
}
Node left = node.getLeft();
if (left != null) {
stack.push(left);
}
}
使用堆栈来跟踪节点
Stack<Node> s;
s.prepend(tree.head);
while(!s.empty) {
Node n = s.poll_front // gets first node
// do something with q?
for each child of n: s.prepend(child)
}