我正在寻找一个非二叉树的非递归深度优先搜索算法。任何帮助都非常感激。


当前回答

只是想把我的python实现添加到长长的解决方案列表中。这种非递归算法具有发现和完成事件。


worklist = [root_node]
visited = set()
while worklist:
    node = worklist[-1]
    if node in visited:
        # Node is finished
        worklist.pop()
    else:
        # Node is discovered
        visited.add(node)
        for child in node.children:
            worklist.append(child)

其他回答

这是一个java程序的链接,显示DFS同时遵循递归和非递归方法,还计算发现和完成时间,但没有边对齐。

    public void DFSIterative() {
    Reset();
    Stack<Vertex> s = new Stack<>();
    for (Vertex v : vertices.values()) {
        if (!v.visited) {
            v.d = ++time;
            v.visited = true;
            s.push(v);
            while (!s.isEmpty()) {
                Vertex u = s.peek();
                s.pop();
                boolean bFinished = true;
                for (Vertex w : u.adj) {
                    if (!w.visited) {
                        w.visited = true;
                        w.d = ++time;
                        w.p = u;
                        s.push(w);
                        bFinished = false;
                        break;
                    }
                }
                if (bFinished) {
                    u.f = ++time;
                    if (u.p != null)
                        s.push(u.p);
                }
            }
        }
    }
}

这里是完整的源代码。

使用堆栈来跟踪节点

Stack<Node> s;

s.prepend(tree.head);

while(!s.empty) {
    Node n = s.poll_front // gets first node

    // do something with q?

    for each child of n: s.prepend(child)

}

你可以使用堆栈。我用邻接矩阵实现了图:

void DFS(int current){
    for(int i=1; i<N; i++) visit_table[i]=false;
    myStack.push(current);
    cout << current << "  ";
    while(!myStack.empty()){
        current = myStack.top();
        for(int i=0; i<N; i++){
            if(AdjMatrix[current][i] == 1){
                if(visit_table[i] == false){ 
                    myStack.push(i);
                    visit_table[i] = true;
                    cout << i << "  ";
                }
                break;
            }
            else if(!myStack.empty())
                myStack.pop();
        }
    }
}

Java中的DFS迭代:

//DFS: Iterative
private Boolean DFSIterative(Node root, int target) {
    if (root == null)
        return false;
    Stack<Node> _stack = new Stack<Node>();
    _stack.push(root);
    while (_stack.size() > 0) {
        Node temp = _stack.peek();
        if (temp.data == target)
            return true;
        if (temp.left != null)
            _stack.push(temp.left);
        else if (temp.right != null)
            _stack.push(temp.right);
        else
            _stack.pop();
    }
    return false;
}

使用Stack,以下是要遵循的步骤:

如果可能,访问一个相邻的未访问顶点,标记它, 然后把它推到堆栈上。 如果您不能遵循第1步,那么,如果可能的话,弹出一个顶点 堆栈。 如果你不能遵循第1步或第2步,你就完了。


下面是执行上述步骤的Java程序:

public void searchDepthFirst() {
    // begin at vertex 0
    vertexList[0].wasVisited = true;
    displayVertex(0);
    stack.push(0);
    while (!stack.isEmpty()) {
        int adjacentVertex = getAdjacentUnvisitedVertex(stack.peek());
        // if no such vertex
        if (adjacentVertex == -1) {
            stack.pop();
        } else {
            vertexList[adjacentVertex].wasVisited = true;
            // Do something
            stack.push(adjacentVertex);
        }
    }
    // stack is empty, so we're done, reset flags
    for (int j = 0; j < nVerts; j++)
            vertexList[j].wasVisited = false;
}