我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

int j = 0;

void int f(int n)
{    
    j++;

    if(j==2)
    {
       j = 0;
       return -n;
    }

    return n;
}

:D

其他回答

MIN_INT不会失败:

int f(n) { return n < 0 ? -abs(n + 1) : -(abs(n) + 1); }

这个怎么样(C语言):

int f(int n)
{
    static int t = 1;
    return (t = t ? 0 : 1) ? -n : n;
}

刚刚试过,而且

f(f(1000)) 

回报-1000

f(f(-1000)) 

返回1000

这是正确的还是我没有抓住重点?

另一个作弊解决方案。我们使用允许运算符重载的语言。然后我们让f(x)返回重载==的值,以始终返回true。这似乎与问题描述相符,但显然违背了谜题的精神。

Ruby示例:

class Cheat
  def ==(n)
     true
  end
end

def f(n)
  Cheat.new
end

这给了我们:

>> f(f(1)) == -1
=> true

而且(不太令人惊讶)

>> f(f(1)) == "hello world"
=> true

这适用于1073741823至1073741822范围:

int F(int n)
{
    if(n < 0)
    {
        if(n > -1073741824)
            n = -1073741824 + n;
        else n = -(n + 1073741824);
    }
    else
    {
        if(n < 1073741823)
            n = 1073741823 + n;
        else n = -(n - 1073741823);
    }
    return n;
}

它的工作原理是获取32位有符号整数的可用范围并将其一分为二。函数的第一次迭代将n自身置于该范围之外。第二次迭代检查它是否在该范围之外-如果是,则将其放回该范围内,但使其为负值。

这实际上是一种保留关于值n的额外“位”信息的方法。

这很简单!

每个数字以4为周期映射到另一个数字,其中所需条件成立。

例子:

规则如下:

0→ 0±2³¹ → ±2³¹古怪的→ 甚至,甚至→ -奇数:对于所有k,0<k<2³⁰: (2k-1)→ (2k)→ (-2k+1)→ (-2k)→ (2k-1)

唯一不匹配的值是±(2³¹-1),因为只有两个。必须有两个不能匹配,因为在二进制补码系统中只有四个数字的倍数,其中0和±2³¹已被保留。

在一的补码系统中,存在+0和-0。我们开始了:

对于所有k,0<k<2³⁰: (+2k)→ (+2k+1)→ (-2k)→ (-2k-1)→ (+2k)