我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
我在上次面试中遇到的一个问题是:
设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。
有什么想法吗?
当前回答
int f(int n) {
return ((n>0)? -1 : 1) * abs(n);
}
其他回答
int f(const int n) {
static int last_n;
if (n == 0)
return 0;
else if (n == last_n)
return -n;
else
{
last_n = n;
return n;
}
}
哈克,但正确。
将n转换为符号和幅度表示;添加范围的1/4;转换回。
#define STYPE int
STYPE sign_bit = (unsigned STYPE) 1 << ( sizeof ( STYPE ) * 8 - 1 );
STYPE f ( STYPE f )
{
unsigned STYPE smf = f > 0 ? f : -f | sign_bit;
smf += sign_bit >> 1;
return smf & sign_bit ? -( smf & ~sign_bit ) : smf;
}
适用于n=[0..2^31-1]
int f(int n) {
if (n & (1 << 31)) // highest bit set?
return -(n & ~(1 << 31)); // return negative of original n
else
return n | (1 << 31); // return n with highest bit set
}
PHP,不使用全局变量:
function f($num) {
static $mem;
$answer = $num-$mem;
if ($mem == 0) {
$mem = $num*2;
} else {
$mem = 0;
}
return $answer;
}
适用于整数、浮点数和数字字符串!
只是意识到这会做一些不必要的工作,但是,不管怎样
这个是Python中的。适用于n的所有负值:
f = abs