显然xrange更快,但我不知道为什么它更快(除了目前为止的传闻之外,没有证据表明它更快),或者除此之外还有什么不同

for i in range(0, 20):
for i in xrange(0, 20):

当前回答

range会创建一个列表,所以如果您选择range(10000000),它会在内存中创建一个包含9999999个元素的列表。xrange是一个生成器,因此它是一个序列对象。

这是正确的,但在Python3中,range()将由Python2xrange()实现。如果您需要实际生成列表,则需要执行以下操作:

list(range(1,100))

其他回答

请参阅本文,了解range和xrange之间的差异:

引用:

range返回您所认为的结果:连续列表整数,具有以0开头的定义长度。xrange,返回一个“xrange对象”,它的行为非常像迭代器

xrange使用迭代器(动态生成值),range返回一个列表。

在这个简单的示例中,您将发现xrange优于range的优势:

import timeit

t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
    pass
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 4.49153590202 seconds

t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
    pass
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 7.04547905922 seconds

在xrange的情况下,上面的示例没有反映出任何明显更好的内容。

现在看看下面的例子,与xrange相比,range真的很慢。

import timeit

t1 = timeit.default_timer()
a = 0
for i in xrange(1, 100000000):
    if i == 10000:
        break
t2 = timeit.default_timer()

print "time taken: ", (t2-t1)  # 0.000764846801758 seconds

t1 = timeit.default_timer()
a = 0
for i in range(1, 100000000):
    if i == 10000:
        break
t2 = timeit.default_timer() 

print "time taken: ", (t2-t1)  # 2.78506207466 seconds

使用range,它已经创建了一个从0到100000000的列表(耗时),但xrange是一个生成器,它只根据需要生成数字,也就是说,如果迭代继续的话。

在Python-3中,范围功能的实现与Python-2中的xrange功能的实现相同,而他们在Python-3中取消了xrange

快乐编码!!

在python 2.x中

range(x)返回一个列表,该列表是在内存中用x元素创建的。

>>> a = range(5)
>>> a
[0, 1, 2, 3, 4]

xrange(x)返回一个xrange对象,它是一个生成器obj,可以根据需要生成数字。它们是在for循环(惰性评估)期间计算的。

对于循环,这比range()稍快,内存效率更高。

>>> b = xrange(5)
>>> b
xrange(5)

根据扫描/打印0-N项的要求,range和xrange的工作原理如下。

range()-在内存中创建一个新列表,并获取整个0到N个项目(总共N+1个)并打印它们。xrange()-创建一个迭代器实例,该实例扫描项目并只将当前遇到的项目保存在内存中,因此始终使用相同的内存量。

如果所需的元素只是在列表的开头,那么它可以节省大量的时间和内存。