我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

这里有一个小的递归函数(在c++中)来进行修改。它需要O(n)额外的空间(在堆栈上)。假设数组在a中,N表示数组长度,我们有:

int multiply(int *a, int fwdProduct, int indx) {
    int revProduct = 1;
    if (indx < N) {
       revProduct = multiply(a, fwdProduct*a[indx], indx+1);
       int cur = a[indx];
       a[indx] = fwdProduct * revProduct;
       revProduct *= cur;
    }
    return revProduct;
}

其他回答

int[] b = new int[] { 1, 2, 3, 4, 5 };            
int j;
for(int i=0;i<b.Length;i++)
{
  int prod = 1;
  int s = b[i];
  for(j=i;j<b.Length-1;j++)
  {
    prod = prod * b[j + 1];
  }
int pos = i;    
while(pos!=-1)
{
  pos--;
  if(pos!=-1)
     prod = prod * b[pos];                    
}
Console.WriteLine("\n Output is {0}",prod);
}
import java.util.Arrays;

public class Pratik
{
    public static void main(String[] args)
    {
        int[] array = {2, 3, 4, 5, 6};      //  OUTPUT: 360  240  180  144  120
        int[] products = new int[array.length];
        arrayProduct(array, products);
        System.out.println(Arrays.toString(products));
    }

    public static void arrayProduct(int array[], int products[])
    {
        double sum = 0, EPSILON = 1e-9;

        for(int i = 0; i < array.length; i++)
            sum += Math.log(array[i]);

        for(int i = 0; i < array.length; i++)
            products[i] = (int) (EPSILON + Math.exp(sum - Math.log(array[i])));
    }
}

输出:

[360, 240, 180, 144, 120]

时间复杂度:O(n) 空间复杂度:O(1)

我们可以先从列表中排除nums[j](其中j != i),然后得到其余部分的乘积;下面是python解决这个难题的方法:

from functools import reduce
def products(nums):
    return [ reduce(lambda x,y: x * y, nums[:i] + nums[i+1:]) for i in range(len(nums)) ]
print(products([1, 2, 3, 4, 5]))

[out]
[120, 60, 40, 30, 24]

下面是我尝试用Java来解决这个问题。抱歉格式不规范,但代码有很多重复,这是我能做的最好的,使它可读。

import java.util.Arrays;

public class Products {
    static int[] products(int... nums) {
        final int N = nums.length;
        int[] prods = new int[N];
        Arrays.fill(prods, 1);
        for (int
           i = 0, pi = 1    ,  j = N-1, pj = 1  ;
           (i < N)         && (j >= 0)          ;
           pi *= nums[i++]  ,  pj *= nums[j--]  )
        {
           prods[i] *= pi   ;  prods[j] *= pj   ;
        }
        return prods;
    }
    public static void main(String[] args) {
        System.out.println(
            Arrays.toString(products(1, 2, 3, 4, 5))
        ); // prints "[120, 60, 40, 30, 24]"
    }
}

循环不变量为pi = nums[0] * nums[1] *..* nums[N-2] *..num [j + 1]。左边的i部分是“前缀”逻辑,右边的j部分是“后缀”逻辑。


递归一行程序

Jasmeet给出了一个(漂亮的!)递归解;我把它变成了这样(可怕!)Java一行程序。它进行就地修改,堆栈中有O(N)个临时空间。

static int multiply(int[] nums, int p, int n) {
    return (n == nums.length) ? 1
      : nums[n] * (p = multiply(nums, nums[n] * (nums[n] = p), n + 1))
          + 0*(nums[n] *= p);
}

int[] arr = {1,2,3,4,5};
multiply(arr, 1, 0);
System.out.println(Arrays.toString(arr));
// prints "[120, 60, 40, 30, 24]"

将Michael Anderson的解决方案翻译成Haskell:

otherProducts xs = zipWith (*) below above

     where below = scanl (*) 1 $ init xs

           above = tail $ scanr (*) 1 xs