我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

下面是另一个简单的概念,可以解决O(N)中的问题。

        int[] arr = new int[] {1, 2, 3, 4, 5};
        int[] outArray = new int[arr.length]; 
        for(int i=0;i<arr.length;i++){
            int res=Arrays.stream(arr).reduce(1, (a, b) -> a * b);
            outArray[i] = res/arr[i];
        }
        System.out.println(Arrays.toString(outArray));

其他回答

php版本 使用不除法的array_product函数。 如果我们将i的值临时设为1,那么数组product将完全满足我们的需要

<?php
function product($key, $arr)
{
    $arr[$key] = 1;
    return array_product($arr);
};
$arr = [1, 2, 3, 4, 5];
$newarr = array();


foreach ($arr as $key => $value) {

    $newarr[$key] = product($key, $arr);
}
print_r($newarr);
{-
Recursive solution using sqrt(n) subsets. Runs in O(n).

Recursively computes the solution on sqrt(n) subsets of size sqrt(n). 
Then recurses on the product sum of each subset.
Then for each element in each subset, it computes the product with
the product sum of all other products.
Then flattens all subsets.

Recurrence on the run time is T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n

Suppose that T(n) ≤ cn in O(n).

T(n) = sqrt(n)*T(sqrt(n)) + T(sqrt(n)) + n
    ≤ sqrt(n)*c*sqrt(n) + c*sqrt(n) + n
    ≤ c*n + c*sqrt(n) + n
    ≤ (2c+1)*n
    ∈ O(n)

Note that ceiling(sqrt(n)) can be computed using a binary search 
and O(logn) iterations, if the sqrt instruction is not permitted.
-}

otherProducts [] = []
otherProducts [x] = [1]
otherProducts [x,y] = [y,x]
otherProducts a = foldl' (++) [] $ zipWith (\s p -> map (*p) s) solvedSubsets subsetOtherProducts
    where 
      n = length a

      -- Subset size. Require that 1 < s < n.
      s = ceiling $ sqrt $ fromIntegral n

      solvedSubsets = map otherProducts subsets
      subsetOtherProducts = otherProducts $ map product subsets

      subsets = reverse $ loop a []
          where loop [] acc = acc
                loop a acc = loop (drop s a) ((take s a):acc)

ruby的解决方案

a = [1,2,3,4]
result = []
a.each {|x| result.push( (a-[x]).reject(&:zero?).reduce(:*)) }
puts result

这是O(n²)但f#太漂亮了

List.fold (fun seed i -> List.mapi (fun j x -> if i=j+1 then x else x*i) seed) 
          [1;1;1;1;1]
          [1..5]

我用Javascript想出了两个解决方案,一个有除法,一个没有

//不除法 函数methodOne(arr) { 加勒比海盗。Map (item => { 加勒比海盗。Reduce ((result, num) => { If (num !== item) { 结果=结果* num; } 返回结果; }, 1) }); } //使用除法 函数methodTwo(arr) { Var mul = arr。Reduce ((result, num) => { 结果=结果* num; 返回结果; }, 1) 加勒比海盗。Map (item => mul/item); } console.log(methodOne([1,2,3,4,5])); console.log(methodTwo([1,2,3,4,5]));