我在一次工作面试中被问到这个问题,我想知道其他人是如何解决这个问题的。我最擅长使用Java,但也欢迎使用其他语言的解决方案。

给定一个数字数组nums,返回一个数字数组products,其中products[i]是所有nums[j]的乘积,j != i。 输入:[1,2,3,4,5] 输出:[(2 * 3 * 4 * 5),(1 * 3 * 4 * 5),(1 * 2 * 4 * 5),(1 * 2 * 3 * 5),(1 * 2 * 3 * 4)] = [120, 60, 40, 30, 24] 你必须在O(N)中不使用除法来做这个。


当前回答

最近有人问我这个问题,虽然我不能得到O(N),但我有一个不同的方法(不幸的是O(N²)),但我想无论如何都要分享。

首先转换为列表<Integer>。

遍历原始数组array.length()次。

使用while循环乘下一组所需的数字:

while (temp < list.size() - 1) {
    res *= list.get(temp);
    temp++;
}

然后将res添加到一个新数组(当然,您已经在前面声明了),然后将数组[i]的值添加到List,依此类推。

我知道这不会有太大的用处,但这是我在面试的压力下想到的:)

    int[] array = new int[]{1, 2, 3, 4, 5};
    List<Integer> list = Arrays.stream(array).boxed().collect(Collectors.toList());
    int[] newarray = new int[array.length];
    int res = 1;
    for (int i = 0; i < array.length; i++) {
        int temp = i;
        while (temp < list.size() - 1) {
            res *= list.get(temp);
            temp++;
        }
        newarray[i] = res;
        list.add(array[i]);
        res = 1;
    }

输出:[24,120,60,40,30]

其他回答

这是O(n²)但f#太漂亮了

List.fold (fun seed i -> List.mapi (fun j x -> if i=j+1 then x else x*i) seed) 
          [1;1;1;1;1]
          [1..5]

这里有一个小的递归函数(在c++中)来进行修改。它需要O(n)额外的空间(在堆栈上)。假设数组在a中,N表示数组长度,我们有:

int multiply(int *a, int fwdProduct, int indx) {
    int revProduct = 1;
    if (indx < N) {
       revProduct = multiply(a, fwdProduct*a[indx], indx+1);
       int cur = a[indx];
       a[indx] = fwdProduct * revProduct;
       revProduct *= cur;
    }
    return revProduct;
}
def products(nums):
    prefix_products = []
    for num in nums:
        if prefix_products:
            prefix_products.append(prefix_products[-1] * num)
        else:
            prefix_products.append(num)

    suffix_products = []
    for num in reversed(nums):
        if suffix_products:
            suffix_products.append(suffix_products[-1] * num)
        else:
            suffix_products.append(num)
        suffix_products = list(reversed(suffix_products))

    result = []
    for i in range(len(nums)):
        if i == 0:
            result.append(suffix_products[i + 1])
        elif i == len(nums) - 1:
            result.append(prefix_products[i-1])
        else:
            result.append(
                prefix_products[i-1] * suffix_products[i+1]
            )
    return result

预先计算每个元素左右两边数字的乘积。 对于每个元素,期望值都是它相邻元素乘积的乘积。

#include <stdio.h>

unsigned array[5] = { 1,2,3,4,5};

int main(void)
{
unsigned idx;

unsigned left[5]
        , right[5];
left[0] = 1;
right[4] = 1;

        /* calculate products of numbers to the left of [idx] */
for (idx=1; idx < 5; idx++) {
        left[idx] = left[idx-1] * array[idx-1];
        }

        /* calculate products of numbers to the right of [idx] */
for (idx=4; idx-- > 0; ) {
        right[idx] = right[idx+1] * array[idx+1];
        }

for (idx=0; idx <5 ; idx++) {
        printf("[%u] Product(%u*%u) = %u\n"
                , idx, left[idx] , right[idx]  , left[idx] * right[idx]  );
        }

return 0;
}

结果:

$ ./a.out
[0] Product(1*120) = 120
[1] Product(1*60) = 60
[2] Product(2*20) = 40
[3] Product(6*5) = 30
[4] Product(24*1) = 24

(更新:现在我仔细看,这使用与Michael Anderson, Daniel Migowski和上面的聚基因润滑剂相同的方法)

还有一个O(N^(3/2))非最优解。不过,这很有趣。

首先预处理大小为N^0.5的每个部分乘法(这在O(N)时间复杂度中完成)。然后,计算每个数字的其他值的倍数可以在2*O(N^0.5)时间内完成(为什么?因为您只需要将其他((N^0.5) - 1)数字的最后一个元素相乘,并将结果与属于当前数字组的((N^0.5) - 1)数字相乘。对每一个数都这样做,可以得到O(N^(3/2))时间。

例子:

4, 6, 7, 2, 3, 1, 9, 5, 8

部分结果: 4*6*7 = 168 2*3*1 = 6 9*5*8 = 360

要计算3的值,需要将其他组的值乘以168*360,然后乘以2*1。