受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。
[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]
就变成:
[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]
更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?
当前回答
JavaScript解决方案旋转矩阵90度的地方:
function rotateBy90(m) {
var length = m.length;
//for each layer of the matrix
for (var first = 0; first < length >> 1; first++) {
var last = length - 1 - first;
for (var i = first; i < last; i++) {
var top = m[first][i]; //store top
m[first][i] = m[last - i][first]; //top = left
m[last - i][first] = m[last][last - i]; //left = bottom
m[last][last - i] = m[i][last]; //bottom = right
m[i][last] = top; //right = top
}
}
return m;
}
其他回答
public static void rotateMatrix(int[,] matrix)
{
//C#, to rotate an N*N matrix in place
int n = matrix.GetLength(0);
int layers = n / 2;
int temp, temp2;
for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself
{
int offset = 0;
while (offset < n - 2 * i - 1)
{
// top right <- top left
temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
matrix[i + offset, n - i - 1] = matrix[i, i + offset];
//bottom right <- top right
temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
matrix[n - i - 1, n - i - 1 - offset] = temp;
//bottom left <- bottom right
temp = matrix[n - i - 1 - offset, i];
matrix[n - i - 1 - offset, i] = temp2;
//top left <- bottom left
matrix[i, i + offset] = temp;
offset++;
}
}
}
这是c#的
int[,] array = new int[4,4] {
{ 1,2,3,4 },
{ 5,6,7,8 },
{ 9,0,1,2 },
{ 3,4,5,6 }
};
int[,] rotated = RotateMatrix(array, 4);
static int[,] RotateMatrix(int[,] matrix, int n) {
int[,] ret = new int[n, n];
for (int i = 0; i < n; ++i) {
for (int j = 0; j < n; ++j) {
ret[i, j] = matrix[n - j - 1, i];
}
}
return ret;
}
/* 90-degree clockwise:
temp_array = left_col
left_col = bottom_row
bottom_row = reverse(right_col)
reverse(right_col) = reverse(top_row)
reverse(top_row) = temp_array
*/
void RotateClockwise90(int ** arr, int lo, int hi) {
if (lo >= hi)
return;
for (int i=lo; i<hi; i++) {
int j = lo+hi-i;
int temp = arr[i][lo];
arr[i][lo] = arr[hi][i];
arr[hi][i] = arr[j][hi];
arr[j][hi] = arr[lo][j];
arr[lo][j] = temp;
}
RotateClockwise90(arr, lo+1, hi-1);
}
我只用一个循环就能做到。时间复杂度看起来像O(K)其中K是数组中的所有元素。 下面是我用JavaScript做的:
首先,我们用一个数组来表示n^2矩阵。然后,像这样迭代它:
/**
* Rotates matrix 90 degrees clockwise
* @param arr: the source array
* @param n: the array side (array is square n^2)
*/
function rotate (arr, n) {
var rotated = [], indexes = []
for (var i = 0; i < arr.length; i++) {
if (i < n)
indexes[i] = i * n + (n - 1)
else
indexes[i] = indexes[i - n] - 1
rotated[indexes[i]] = arr[i]
}
return rotated
}
基本上,我们转换源数组下标:
[0,1,2,3,4,5,6,7,8] => [2,5,8,1,4,7,0,3 6]
然后,使用这个转换后的索引数组,我们将实际值放在最终旋转的数组中。
下面是一些测试用例:
//n=3
rotate([
1, 2, 3,
4, 5, 6,
7, 8, 9], 3))
//result:
[7, 4, 1,
8, 5, 2,
9, 6, 3]
//n=4
rotate([
1, 2, 3, 4,
5, 6, 7, 8,
9, 10, 11, 12,
13, 14, 15, 16], 4))
//result:
[13, 9, 5, 1,
14, 10, 6, 2,
15, 11, 7, 3,
16, 12, 8, 4]
//n=5
rotate([
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15,
16, 17, 18, 19, 20,
21, 22, 23, 24, 25], 5))
//result:
[21, 16, 11, 6, 1,
22, 17, 12, 7, 2,
23, 18, 13, 8, 3,
24, 19, 14, 9, 4,
25, 20, 15, 10, 5]
这里有大量的好代码,但我只是想以几何形式展示,这样你就能更好地理解代码逻辑。以下是我的处理方法。
首先,不要把这和换位相混淆,换位是很容易的。
基本的想法是把它当作层,我们一次旋转一个层。
假设我们有一辆4x4
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
当我们顺时针旋转90度,我们得到
13 9 5 1
14 10 6 2
15 11 7 3
16 12 8 4
我们来分解它,首先旋转这四个角
1 4
13 16
然后我们旋转下面这个有点歪斜的菱形
2
8
9
15
然后是第二个斜菱形
3
5
12
14
这就搞定了外缘基本上我们一次做一个壳层直到
最后是中间的方块(如果是奇数则是最后一个不动的元素)
6 7
10 11
现在我们来算出每一层的指标,假设我们总是在最外层工作,我们正在做
[0,0] -> [0,n-1], [0,n-1] -> [n-1,n-1], [n-1,n-1] -> [n-1,0], and [n-1,0] -> [0,0]
[0,1] -> [1,n-1], [1,n-2] -> [n-1,n-2], [n-1,n-2] -> [n-2,0], and [n-2,0] -> [0,1]
[0,2] -> [2,n-2], [2,n-2] -> [n-1,n-3], [n-1,n-3] -> [n-3,0], and [n-3,0] -> [0,2]
等等等等 直到我们走到边缘的一半
所以总的来说模式是
[0,i] -> [i,n-i], [i,n-i] -> [n-1,n-(i+1)], [n-1,n-(i+1)] -> [n-(i+1),0], and [n-(i+1),0] to [0,i]