受Raymond Chen帖子的启发,假设你有一个4x4二维数组,写一个函数使它旋转90度。Raymond链接到伪代码中的解决方案,但我想看到一些真实的东西。

[1][2][3][4]
[5][6][7][8]
[9][0][1][2]
[3][4][5][6]

就变成:

[3][9][5][1]
[4][0][6][2]
[5][1][7][3]
[6][2][8][4]

更新:Nick的答案是最直接的,但是有没有比n²更好的方法呢?如果矩阵是10000x10000呢?


当前回答

#include <iostream>
#include <iomanip>

using namespace std;
const int SIZE=3;
void print(int a[][SIZE],int);
void rotate(int a[][SIZE],int);

void main()
{
    int a[SIZE][SIZE]={{11,22,33},{44,55,66},{77,88,99}};
    cout<<"the array befor rotate\n";

    print(a,SIZE);
    rotate( a,SIZE);
    cout<<"the array after rotate\n";
    print(a,SIZE);
    cout<<endl;

}

void print(int a[][SIZE],int SIZE)
{
    int i,j;
    for(i=0;i<SIZE;i++)
       for(j=0;j<SIZE;j++)
          cout<<a[i][j]<<setw(4);
}

void rotate(int a[][SIZE],int SIZE)
{
    int temp[3][3],i,j;
    for(i=0;i<SIZE;i++)
       for(j=0;j<SIZE/2.5;j++)
       {
           temp[i][j]= a[i][j];
           a[i][j]= a[j][SIZE-i-1] ;
           a[j][SIZE-i-1] =temp[i][j];

       }
}

其他回答

一些人已经举了一些例子,其中涉及到创建一个新数组。

还有一些需要考虑的事情:

(a)不实际移动数据,只需以不同的方式遍历“旋转”的数组。

(b)就地轮换可能有点棘手。您需要一点空白的地方(大概相当于一行或一列的大小)。有一篇古老的ACM论文是关于进行原地转置的(http://doi.acm.org/10.1145/355719.355729),但是他们的示例代码是令人讨厌的充满goto的FORTRAN。

附录:

http://doi.acm.org/10.1145/355611.355612是另一种更优越的就地转置算法。

    public static void rotateMatrix(int[,] matrix)
    {
        //C#, to rotate an N*N matrix in place
        int n = matrix.GetLength(0);
        int layers =  n / 2;
        int temp, temp2;

        for (int i = 0; i < layers; i++) // for a 5 * 5 matrix, layers will be 2, since at layer three there would be only one element, (2,2), and we do not need to rotate it with itself 
        {
            int offset = 0;
            while (offset < n - 2 * i - 1)
            {
                // top right <- top left 
                temp = matrix[i + offset, n - i - 1]; //top right value when offset is zero
                matrix[i + offset, n - i - 1] = matrix[i, i + offset];   

                //bottom right <- top right 
                temp2 = matrix[n - i - 1, n - i - 1 - offset]; //bottom right value when offset is zero
                matrix[n - i - 1, n - i - 1 - offset] = temp;  

                //bottom left <- bottom right 
                temp = matrix[n - i - 1 - offset, i];
                matrix[n - i - 1 - offset, i] = temp2;  

                //top left <- bottom left 
                matrix[i, i + offset] = temp; 

                offset++;
            }
        }
    }

PHP解决方案为顺时针和逆时针

$aMatrix = array(
    array( 1, 2, 3 ),
    array( 4, 5, 6 ),
    array( 7, 8, 9 )
    );

function CounterClockwise( $aMatrix )
{
    $iCount  = count( $aMatrix );
    $aReturn = array();
    for( $y = 0; $y < $iCount; ++$y )
    {
        for( $x = 0; $x < $iCount; ++$x )
        {
            $aReturn[ $iCount - $x - 1 ][ $y ] = $aMatrix[ $y ][ $x ];
        }
    }
    return $aReturn;
}

function Clockwise( $aMatrix )
{
    $iCount  = count( $aMatrix );
    $aReturn = array();
    for( $y = 0; $y < $iCount; ++$y )
    {
        for( $x = 0; $x < $iCount; ++$x )
        {
            $aReturn[ $x ][ $iCount - $y - 1 ] = $aMatrix[ $y ][ $x ];
        }
    }
    return $aReturn;
}

function printMatrix( $aMatrix )
{
    $iCount = count( $aMatrix );
    for( $x = 0; $x < $iCount; ++$x )
    {
        for( $y = 0; $y < $iCount; ++$y )
        {
            echo $aMatrix[ $x ][ $y ];
            echo " ";
        }
        echo "\n";
    }
}
printMatrix( $aMatrix );
echo "\n";
$aNewMatrix = CounterClockwise( $aMatrix );
printMatrix( $aNewMatrix );
echo "\n";
$aNewMatrix = Clockwise( $aMatrix );
printMatrix( $aNewMatrix );

Nick的答案也适用于NxM阵列,只需要做一点修改(与NxN相反)。

string[,] orig = new string[n, m];
string[,] rot = new string[m, n];

...

for ( int i=0; i < n; i++ )
  for ( int j=0; j < m; j++ )
    rot[j, n - i - 1] = orig[i, j];

考虑这个问题的一种方法是将轴(0,0)的中心从左上角移动到右上角。你只是简单地从一个转置到另一个。

原地旋转不可能比O(n²)更快,原因是如果我们想旋转矩阵,我们必须至少一次触及所有n²元素,无论你实现什么算法。