我有一个数据框架df:

>>> df
                  sales  discount  net_sales    cogs
STK_ID RPT_Date                                     
600141 20060331   2.709       NaN      2.709   2.245
       20060630   6.590       NaN      6.590   5.291
       20060930  10.103       NaN     10.103   7.981
       20061231  15.915       NaN     15.915  12.686
       20070331   3.196       NaN      3.196   2.710
       20070630   7.907       NaN      7.907   6.459

然后我想删除具有特定序列号的行,这些序列号在列表中表示,假设这里是[1,2,4],然后左:

                  sales  discount  net_sales    cogs
STK_ID RPT_Date                                     
600141 20060331   2.709       NaN      2.709   2.245
       20061231  15.915       NaN     15.915  12.686
       20070630   7.907       NaN      7.907   6.459

什么函数可以做到这一点?


当前回答

这对我很有效

# Create a list containing the index numbers you want to remove
index_list = list(range(42766, 42798))
df.drop(df.index[index_list], inplace =True)
df.shape

这将删除所创建范围内的所有索引

其他回答

如果DataFrame很大,并且要删除的行数也很大,那么通过索引df.drop(df.index[])简单地删除会花费太多时间。

在我的情况下,我有一个多索引的DataFrame的浮动100M行x 3 cols,我需要从它删除10k行。我发现的最快的方法是,完全违反直觉的,取剩下的行。

设indexes_to_drop为要删除的位置索引数组(问题中的[1,2,4])。

indexes_to_keep = set(range(df.shape[0])) - set(indexes_to_drop)
df_sliced = df.take(list(indexes_to_keep))

在我的例子中,这需要20.5秒,而简单的df。掉落花了5分钟27秒,消耗了大量内存。结果的数据帧是相同的。

这里有一个具体的例子,我想展示。假设在某些行中有许多重复的条目。如果您有字符串条目,您可以很容易地使用字符串方法找到要删除的所有索引。

ind_drop = df[df['column_of_strings'].apply(lambda x: x.startswith('Keyword'))].index

现在使用索引删除这些行

new_df = df.drop(ind_drop)

在对@theodros-zelleke的回答的评论中,@j-jones询问如果索引不是唯一的该怎么办。我不得不处理这种情况。我所做的就是在调用drop()之前重命名索引中的重复项,就像这样:

dropped_indexes = <determine-indexes-to-drop>
df.index = rename_duplicates(df.index)
df.drop(df.index[dropped_indexes], inplace=True)

其中rename_duplicate()是我定义的函数,它遍历index的元素并重命名重复项。我使用了与pd.read_csv()在列上使用的相同的重命名模式,即“%s。%d" % (name, count),其中name是行名,count是它之前出现的次数。

只使用Index参数删除行:-

df.drop(index = 2, inplace = True)

多行:-

df.drop(index=[1,3], inplace = True)

正如Dennis Golomazov的回答所建议的,使用逐行删除。您可以选择保留行。假设您有一个要删除的行索引列表,名为indices_to_drop。您可以将其转换为掩码,操作如下:

mask = np.ones(len(df), bool)
mask[indices_to_drop] = False

你可以直接使用这个索引:

df_new = df.iloc[mask]

这个方法的好处是,掩码可以来自任何来源:它可以是一个包含许多列的条件,也可以是其他条件。

真正好的事情是,你根本不需要原始DataFrame的索引,所以索引是否唯一并不重要。

缺点当然是不能用这种方法进行就地放置。