我一直在重读Docker文档,试图理解Docker和完整VM之间的区别。它是如何设法提供一个完整的文件系统、隔离的网络环境等而不那么沉重的?

为什么将软件部署到Docker映像(如果这是正确的术语)比简单地部署到一致的生产环境更容易?


当前回答

Docker(基本上是容器)支持OS虚拟化,即您的应用程序感觉它有一个完整的OS实例,而VM支持硬件虚拟化。你觉得它是一台物理机器,你可以在其中启动任何操作系统。

在Docker中,运行的容器共享主机OS内核,而在VM中,它们有自己的OS文件。当您将应用程序部署到各种服务环境(如“测试”或“生产”)时,开发应用程序的环境(操作系统)将是相同的。

例如,如果您开发了一个运行在端口4000上的web服务器,当您将其部署到“测试”环境时,该端口已经被其他程序使用,因此它停止工作。在容器中有层;您对操作系统所做的所有更改都将保存在一个或多个层中,这些层将是映像的一部分,因此无论映像到哪里,依赖项都将存在。

在下面所示的示例中,主机有三个VM。为了使VM中的应用程序完全隔离,它们每个都有自己的OS文件、库和应用程序代码副本,以及OS的完整内存实例。而下图显示了与容器相同的场景。在这里,容器只需共享主机操作系统,包括内核和库,因此它们不需要启动OS、加载库或为这些文件支付专用内存成本。它们所占用的唯一增量空间是应用程序在容器中运行所需的任何内存和磁盘空间。虽然应用程序的环境感觉像一个专用的操作系统,但应用程序的部署方式与它在专用主机上的部署方式一样。容器化应用程序在几秒钟内启动,与VM情况相比,机器上可以容纳更多的应用程序实例。

资料来源:https://azure.microsoft.com/en-us/blog/containers-docker-windows-and-trends/

其他回答

Feature Virtual Machine (Docker) Containers
OS Each VM Does contains an Operating System Each Docker Container Does Not contains an Operating System
H/W Each VM contain a virtual copy of the hardware that OS requires to run. There is No virtualization of H/W with containers
Weight VM's are heavy -- reason sited above-- containers are lightweight and, thus, fast
Required S/W Virtuliazation achieve using software called a hypervisor Containerzation achieve using software called a Docker
Core Virtual machines provide virtual hardware (or hardware on which an operating system and other programs can be installed) Docker containers don’t use any hardware virtualization. **It helps to use container
Abstraction Virtual machines provide hardware abstractions so you can run multiple operating systems. Containers provide OS abstractions so you can run multiple containers.
Boot-Time It takes a long time (often minutes) to create and require significant resource overhead because they run a whole operating system in addition to the software you want to use. It takes less time because Programs running inside Docker containers interface directly with the host’s Linux kernel.

我喜欢肯·科克伦的回答。

但我想补充一点观点,这里没有详细介绍。在我看来,Docker在整个过程中也有所不同。与虚拟机不同,Docker不仅仅是硬件的最佳资源共享,而且它还为打包应用程序提供了一个“系统”(作为一组微服务是可取的,但不是必须的)。

对我来说,它正好填补了面向开发人员的工具(如rpm、Debian包、Maven、npm+Git)与操作工具(如Puppet、VMware、Xen)之间的差距,你可以这么说。。。

为什么将软件部署到docker映像(如果这是正确的术语)比简单地部署到一致的生产环境更容易?

您的问题假定了某种一致的生产环境。但如何保持一致?考虑一些数量(>10)的服务器和应用程序,这是管道中的阶段。

为了保持同步,您将开始使用类似木偶、厨师或您自己的供应脚本、未发布的规则和/或大量文档。。。理论上,服务器可以无限期运行,并保持完全一致和最新。实践无法完全管理服务器的配置,因此存在很大的配置漂移和运行服务器的意外更改空间。

因此,有一种已知的模式可以避免这种情况,即所谓的不可变服务器。但不可变的服务器模式并不受欢迎。主要是因为Docker之前使用的VM的限制。处理几个千兆字节的大图像,移动这些大图像,只是为了改变应用程序中的一些字段,这是非常费力的。可以理解。。。

有了Docker生态系统,你永远不需要在“小改动”上移动千兆字节(感谢aufs和Registry),也不必担心在运行时将应用程序打包到Docker容器中会导致性能下降。您不必担心该图像的版本。

最后,即使在您的Linux笔记本电脑上,您也可以经常复制复杂的生产环境(如果在您的情况下不起作用,请不要打电话给我;)

当然,您可以在VM中启动Docker容器(这是一个好主意)。减少VM级别的服务器资源调配。所有这些都可以由Docker管理。

同时Docker使用自己的实现“libcontainer”而不是LXC。但LXC仍然可用。

Docker封装了一个应用程序及其所有依赖项。

虚拟机封装了一个OS,该OS可以运行它通常可以在裸机上运行的任何应用程序。

关于:-

“为什么将软件部署到docker映像比简单部署到一致的生产环境?"

大多数软件都部署到许多环境中,通常至少部署以下三种环境:

个人开发者PC共享开发人员环境单个测试仪PC共享测试环境QA环境UAT环境负载/性能测试实时登台生产档案文件

还需要考虑以下因素:

根据工作的性质,开发人员,甚至测试人员,都将拥有微妙的或完全不同的PC配置开发人员通常可以在公司或企业标准化规则无法控制的PC上进行开发(例如,在自己的机器上开发的自由职业者(通常是远程开发的),或未“受雇”或“签约”以某种方式配置其PC的开源项目的贡献者)某些环境将由负载平衡配置中的固定数量的多台计算机组成许多生产环境将根据流量级别动态(或“弹性”)创建和销毁基于云的服务器

正如你所看到的,一个组织的服务器总数很少是一位数,通常是三位数,而且很容易更高。

这一切都意味着,仅仅因为巨大的容量(即使是在绿地场景中),首先创建一致的环境就已经足够困难了,但鉴于服务器数量众多、新服务器的添加(动态或手动)、o/s供应商、防病毒供应商、浏览器供应商等的自动更新,由开发人员或服务器技术人员执行的手动软件安装或配置更改等。让我重复一遍-保持环境一致几乎是不可能的(没有双关语)(好吧,对于纯粹主义者来说,这是可以做到的,但这需要大量的时间、精力和纪律,这正是为什么VM和容器(例如Docker)最初被设计出来的原因)。

因此,请更像这样思考您的问题:“鉴于保持所有环境一致性的极端困难,即使考虑到学习曲线,将软件部署到docker映像中是否更容易?”。我想你会发现答案总是“是”——但只有一种方法可以找到,在Stack Overflow上发布这个新问题。

我在生产环境和登台中使用过Docker。当你习惯了它,你会发现它对于构建一个多容器和隔离环境非常强大。

Docker是基于LXC(Linux容器)开发的,在许多Linux发行版中都能完美运行,尤其是Ubuntu。

Docker容器是隔离的环境。当您在Docker容器中发出top命令时,可以看到它,Docker容器是从Docker映像创建的。

此外,由于dockerFile配置,它们非常轻便和灵活。

例如,您可以创建一个Docker映像并配置一个DockerFile,然后告诉它,例如,当它运行时,运行wget“this”,apt-get“that”,运行“some shell script”,设置环境变量等等。

在微服务项目和架构中,Docker是一项非常可行的资产。您可以通过Docker、Docker swarm、Kubernetes和Docker Compose实现可伸缩性、弹性和弹性。

Docker的另一个重要问题是Docker Hub及其社区。例如,我使用Prometheus、Grafana、PrometheusJMXExporter和Docker实现了一个用于监控kafka的生态系统。

为此,我为zookeeper、kafka、Prometheus、Grafana和jmx收集器下载了已配置的Docker容器,然后使用YAML文件为其中一些容器安装了自己的配置,我更改了Docker容器中的一些文件和配置,并在一台机器上使用多容器Docker构建了一个用于监控kafka的完整系统,该系统具有隔离性、可扩展性和弹性,该架构可以轻松移动到多个服务器中。

除了Docker Hub站点之外,还有一个名为quay.io的站点,您可以使用它在那里创建自己的Docker图像仪表板,并将其推送到码头。您甚至可以将Docker图像从DockerHub导入码头,然后在自己的机器上从码头运行。

注意:学习Docker一开始看起来既复杂又困难,但当你习惯了它之后,你就不能没有它了。

我记得在使用Docker的第一天,我发出了错误的命令,或者错误地删除了我的容器和所有数据和配置。