如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

function getDistanceFromLatLonInKm(position1, position2) {
    "use strict";
    var deg2rad = function (deg) { return deg * (Math.PI / 180); },
        R = 6371,
        dLat = deg2rad(position2.lat - position1.lat),
        dLng = deg2rad(position2.lng - position1.lng),
        a = Math.sin(dLat / 2) * Math.sin(dLat / 2)
            + Math.cos(deg2rad(position1.lat))
            * Math.cos(deg2rad(position2.lat))
            * Math.sin(dLng / 2) * Math.sin(dLng / 2),
        c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    return R * c;
}

console.log(getDistanceFromLatLonInKm(
    {lat: 48.7931459, lng: 1.9483572},
    {lat: 48.827167, lng: 2.2459745}
));

其他回答

正如指出的那样,精确的计算应该考虑到地球不是一个完美的球体。以下是这里提供的各种算法的一些比较:

geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km

geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km

geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km

geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km

在小范围内,Keerthana的算法似乎与谷歌Maps的算法一致。谷歌Maps似乎没有遵循任何简单的算法,这表明它可能是这里最准确的方法。

不管怎样,这里是Keerthana算法的Javascript实现:

function geoDistance(lat1, lng1, lat2, lng2){
    const a = 6378.137; // equitorial radius in km
    const b = 6356.752; // polar radius in km

    var sq = x => (x*x);
    var sqr = x => Math.sqrt(x);
    var cos = x => Math.cos(x);
    var sin = x => Math.sin(x);
    var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));

    lat1 = lat1 * Math.PI / 180;
    lng1 = lng1 * Math.PI / 180;
    lat2 = lat2 * Math.PI / 180;
    lng2 = lng2 * Math.PI / 180;

    var R1 = radius(lat1);
    var x1 = R1*cos(lat1)*cos(lng1);
    var y1 = R1*cos(lat1)*sin(lng1);
    var z1 = R1*sin(lat1);

    var R2 = radius(lat2);
    var x2 = R2*cos(lat2)*cos(lng2);
    var y2 = R2*cos(lat2)*sin(lng2);
    var z2 = R2*sin(lat2);

    return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}

非常感谢这一切。我在Objective-C iPhone应用程序中使用了以下代码:

const double PIx = 3.141592653589793;
const double RADIO = 6371; // Mean radius of Earth in Km

double convertToRadians(double val) {

   return val * PIx / 180;
}

-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {

        double dlon = convertToRadians(place2.longitude - place1.longitude);
        double dlat = convertToRadians(place2.latitude - place1.latitude);

        double a = ( pow(sin(dlat / 2), 2) + cos(convertToRadians(place1.latitude))) * cos(convertToRadians(place2.latitude)) * pow(sin(dlon / 2), 2);
        double angle = 2 * asin(sqrt(a));

        return angle * RADIO;
}

纬度和经度是十进制的。我没有在asin()调用中使用min(),因为我使用的距离非常小,以至于它们不需要min()。

它给出了错误的答案,直到我传入弧度的值-现在它几乎与从苹果地图应用程序中获得的值相同:-)

额外的更新:

如果你使用的是iOS4或更高版本,那么苹果会提供一些方法来实现相同的功能:

-(double)kilometresBetweenPlace1:(CLLocationCoordinate2D) place1 andPlace2:(CLLocationCoordinate2D) place2 {

    MKMapPoint  start, finish;


    start = MKMapPointForCoordinate(place1);
    finish = MKMapPointForCoordinate(place2);

    return MKMetersBetweenMapPoints(start, finish) / 1000;
}

精确计算中长点之间距离所需的函数是复杂的,陷阱也很多。我不推荐哈弗辛或其他球形的解决方案,因为有很大的不准确性(地球不是一个完美的球体)。vincenty公式更好,但在某些情况下会抛出错误,即使编码正确。

与其自己编写函数,我建议使用geopy,它已经实现了非常精确的地理库来进行距离计算(论文来自作者)。

#pip install geopy
from geopy.distance import geodesic
NY = [40.71278,-74.00594]
Beijing = [39.90421,116.40739]
print("WGS84: ",geodesic(NY, Beijing).km) #WGS84 is Standard
print("Intl24: ",geodesic(NY, Beijing, ellipsoid='Intl 1924').km) #geopy includes different ellipsoids
print("Custom ellipsoid: ",geodesic(NY, Beijing, ellipsoid=(6377., 6356., 1 / 297.)).km) #custom ellipsoid

#supported ellipsoids:
#model             major (km)   minor (km)     flattening
#'WGS-84':        (6378.137,    6356.7523142,  1 / 298.257223563)
#'GRS-80':        (6378.137,    6356.7523141,  1 / 298.257222101)
#'Airy (1830)':   (6377.563396, 6356.256909,   1 / 299.3249646)
#'Intl 1924':     (6378.388,    6356.911946,   1 / 297.0)
#'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465)
#'GRS-67':        (6378.1600,   6356.774719,   1 / 298.25)

这个库的唯一缺点是它不支持向量化计算。 对于向量化计算,您可以使用新的gevectorslib。

#pip install geovectorslib
from geovectorslib import inverse
print(inverse(lats1,lons1,lats2,lons2)['s12'])

lat和lon是numpy数组。Geovectorslib是非常准确和非常快!我还没有找到改变椭球的方法。标准采用WGS84椭球,是大多数用途的最佳选择。

//JAVA
    public Double getDistanceBetweenTwoPoints(Double latitude1, Double longitude1, Double latitude2, Double longitude2) {
    final int RADIUS_EARTH = 6371;

    double dLat = getRad(latitude2 - latitude1);
    double dLong = getRad(longitude2 - longitude1);

    double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) + Math.cos(getRad(latitude1)) * Math.cos(getRad(latitude2)) * Math.sin(dLong / 2) * Math.sin(dLong / 2);
    double c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1 - a));
    return (RADIUS_EARTH * c) * 1000;
    }

    private Double getRad(Double x) {
    return x * Math.PI / 180;
    }

FSharp版本,使用里程:

let radialDistanceHaversine location1 location2 : float = 
                let degreeToRadian degrees = degrees * System.Math.PI / 180.0
                let earthRadius = 3959.0
                let deltaLat = location2.Latitude - location1.Latitude |> degreeToRadian
                let deltaLong = location2.Longitude - location1.Longitude |> degreeToRadian
                let a =
                    (deltaLat / 2.0 |> sin) ** 2.0
                    + (location1.Latitude |> degreeToRadian |> cos)
                    * (location2.Latitude |> degreeToRadian |> cos)
                    * (deltaLong / 2.0 |> sin) ** 2.0
                atan2 (a |> sqrt) (1.0 - a |> sqrt)
                * 2.0
                * earthRadius