如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
如何计算由经纬度指定的两点之间的距离?
为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。
当前回答
下面是Erlang实现
lat_lng({Lat1, Lon1}=_Point1, {Lat2, Lon2}=_Point2) ->
P = math:pi() / 180,
R = 6371, % Radius of Earth in KM
A = 0.5 - math:cos((Lat2 - Lat1) * P) / 2 +
math:cos(Lat1 * P) * math:cos(Lat2 * P) * (1 - math:cos((Lon2 - Lon1) * P))/2,
R * 2 * math:asin(math:sqrt(A)).
其他回答
精确计算中长点之间距离所需的函数是复杂的,陷阱也很多。我不推荐哈弗辛或其他球形的解决方案,因为有很大的不准确性(地球不是一个完美的球体)。vincenty公式更好,但在某些情况下会抛出错误,即使编码正确。
与其自己编写函数,我建议使用geopy,它已经实现了非常精确的地理库来进行距离计算(论文来自作者)。
#pip install geopy
from geopy.distance import geodesic
NY = [40.71278,-74.00594]
Beijing = [39.90421,116.40739]
print("WGS84: ",geodesic(NY, Beijing).km) #WGS84 is Standard
print("Intl24: ",geodesic(NY, Beijing, ellipsoid='Intl 1924').km) #geopy includes different ellipsoids
print("Custom ellipsoid: ",geodesic(NY, Beijing, ellipsoid=(6377., 6356., 1 / 297.)).km) #custom ellipsoid
#supported ellipsoids:
#model major (km) minor (km) flattening
#'WGS-84': (6378.137, 6356.7523142, 1 / 298.257223563)
#'GRS-80': (6378.137, 6356.7523141, 1 / 298.257222101)
#'Airy (1830)': (6377.563396, 6356.256909, 1 / 299.3249646)
#'Intl 1924': (6378.388, 6356.911946, 1 / 297.0)
#'Clarke (1880)': (6378.249145, 6356.51486955, 1 / 293.465)
#'GRS-67': (6378.1600, 6356.774719, 1 / 298.25)
这个库的唯一缺点是它不支持向量化计算。 对于向量化计算,您可以使用新的gevectorslib。
#pip install geovectorslib
from geovectorslib import inverse
print(inverse(lats1,lons1,lats2,lons2)['s12'])
lat和lon是numpy数组。Geovectorslib是非常准确和非常快!我还没有找到改变椭球的方法。标准采用WGS84椭球,是大多数用途的最佳选择。
这是一个简单的javascript函数,从这个链接可能是有用的。不知何故相关,但我们使用谷歌地球javascript插件而不是地图
function getApproximateDistanceUnits(point1, point2) {
var xs = 0;
var ys = 0;
xs = point2.getX() - point1.getX();
xs = xs * xs;
ys = point2.getY() - point1.getY();
ys = ys * ys;
return Math.sqrt(xs + ys);
}
单位不是距离,而是相对于坐标的比率。还有其他相关的计算,你可以在这里代替getApproximateDistanceUnits函数链接
然后我使用这个函数来查看经纬度是否在半径内
function isMapPlacemarkInRadius(point1, point2, radi) {
if (point1 && point2) {
return getApproximateDistanceUnits(point1, point2) <= radi;
} else {
return 0;
}
}
点可以定义为
$$.getPoint = function(lati, longi) {
var location = {
x: 0,
y: 0,
getX: function() { return location.x; },
getY: function() { return location.y; }
};
location.x = lati;
location.y = longi;
return location;
};
然后你可以做你的事情,看看一个点是否在一个半径范围内,比如:
//put it on the map if within the range of a specified radi assuming 100,000,000 units
var iconpoint = Map.getPoint(pp.latitude, pp.longitude);
var centerpoint = Map.getPoint(Settings.CenterLatitude, Settings.CenterLongitude);
//approx ~200 units to show only half of the globe from the default center radius
if (isMapPlacemarkInRadius(centerpoint, iconpoint, 120)) {
addPlacemark(pp.latitude, pp.longitude, pp.name);
}
else {
otherSidePlacemarks.push({
latitude: pp.latitude,
longitude: pp.longitude,
name: pp.name
});
}
在我的项目中,我需要计算很多点之间的距离,所以我继续尝试优化我在这里找到的代码。平均而言,在不同的浏览器中,我的新实现的运行速度比获得最多好评的答案快2倍。
function distance(lat1, lon1, lat2, lon2) {
var p = 0.017453292519943295; // Math.PI / 180
var c = Math.cos;
var a = 0.5 - c((lat2 - lat1) * p)/2 +
c(lat1 * p) * c(lat2 * p) *
(1 - c((lon2 - lon1) * p))/2;
return 12742 * Math.asin(Math.sqrt(a)); // 2 * R; R = 6371 km
}
您可以在这里使用我的jsPerf并查看结果。
最近我需要在python中做同样的事情,所以这里是一个python实现:
from math import cos, asin, sqrt, pi
def distance(lat1, lon1, lat2, lon2):
p = pi/180
a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p) * cos(lat2*p) * (1-cos((lon2-lon1)*p))/2
return 12742 * asin(sqrt(a)) #2*R*asin...
为了完整起见:维基百科上的Haversine。
如果你正在使用python; PIP安装地质
from geopy.distance import geodesic
origin = (30.172705, 31.526725) # (latitude, longitude) don't confuse
destination = (30.288281, 31.732326)
print(geodesic(origin, destination).meters) # 23576.805481751613
print(geodesic(origin, destination).kilometers) # 23.576805481751613
print(geodesic(origin, destination).miles) # 14.64994773134371
你也可以使用像geolib这样的模块:
安装方法:
$ npm install geolib
使用方法:
import { getDistance } from 'geolib'
const distance = getDistance(
{ latitude: 51.5103, longitude: 7.49347 },
{ latitude: "51° 31' N", longitude: "7° 28' E" }
)
console.log(distance)
文档: https://www.npmjs.com/package/geolib