如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

你可以使用CLLocationDistance中的构建来计算这个:

CLLocation *location1 = [[CLLocation alloc] initWithLatitude:latitude1 longitude:longitude1];
CLLocation *location2 = [[CLLocation alloc] initWithLatitude:latitude2 longitude:longitude2];
[self distanceInMetersFromLocation:location1 toLocation:location2]

- (int)distanceInMetersFromLocation:(CLLocation*)location1 toLocation:(CLLocation*)location2 {
    CLLocationDistance distanceInMeters = [location1 distanceFromLocation:location2];
    return distanceInMeters;
}

在你的例子中,如果你想要公里,只要除以1000。

其他回答

计算距离——尤其是大距离——的主要挑战之一是解释地球的曲率。如果地球是平的,计算两点之间的距离就会像计算直线一样简单!哈弗辛公式包括一个常数(下面是R变量),它表示地球的半径。根据你是用英里还是公里来测量,它分别等于3956英里或6367公里。 基本公式是:

Dlon = lon2 - lon1 dat = lat2 - lat1 = (sin (dlat / 2)) ^ 2 + cos (lat1) * cos (lat2) * (sin (dlon / 2)) ^ 2 C = 2 * atan2(√(a),√(1-a)) distance = R * c(其中R为地球半径) R = 6367公里OR 3956英里

     lat1, lon1: The Latitude and Longitude of point 1 (in decimal degrees)
     lat2, lon2: The Latitude and Longitude of point 2 (in decimal degrees)
     unit: The unit of measurement in which to calculate the results where:
     'M' is statute miles (default)
     'K' is kilometers
     'N' is nautical miles

样本

function distance(lat1, lon1, lat2, lon2, unit) {
    try {
        var radlat1 = Math.PI * lat1 / 180
        var radlat2 = Math.PI * lat2 / 180
        var theta = lon1 - lon2
        var radtheta = Math.PI * theta / 180
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        dist = Math.acos(dist)
        dist = dist * 180 / Math.PI
        dist = dist * 60 * 1.1515
        if (unit == "K") {
            dist = dist * 1.609344
        }
        if (unit == "N") {
            dist = dist * 0.8684
        }
        return dist
    } catch (err) {
        console.log(err);
    }
}

这个链接可能对你有帮助,因为它详细介绍了使用哈弗辛公式来计算距离。

摘录:

这个脚本计算两点之间的大圆距离 也就是说,在地球表面上的最短距离-使用 “半正矢”公式。

function getDistanceFromLatLonInKm(lat1,lon1,lat2,lon2) {
  var R = 6371; // Radius of the earth in km
  var dLat = deg2rad(lat2-lat1);  // deg2rad below
  var dLon = deg2rad(lon2-lon1); 
  var a = 
    Math.sin(dLat/2) * Math.sin(dLat/2) +
    Math.cos(deg2rad(lat1)) * Math.cos(deg2rad(lat2)) * 
    Math.sin(dLon/2) * Math.sin(dLon/2)
    ; 
  var c = 2 * Math.atan2(Math.sqrt(a), Math.sqrt(1-a)); 
  var d = R * c; // Distance in km
  return d;
}

function deg2rad(deg) {
  return deg * (Math.PI/180)
}

要计算球体上两点之间的距离,你需要做大圆计算。

如果你需要将距离重新投影到平面上,MapTools中有许多C/ c++库可以帮助你进行地图投影。要做到这一点,你需要不同坐标系的投影字符串。

你可能还会发现MapWindow是一个可视化点的有用工具。此外,由于它是开源的,它是如何使用project.dll库的有用指南,它似乎是核心的开源投影库。

数学有问题,LUA的学位…如果有人知道修复,请清理这段代码!

与此同时,这里有一个Haversine在LUA中的实现(与Redis一起使用!)

function calcDist(lat1, lon1, lat2, lon2)
    lat1= lat1*0.0174532925
    lat2= lat2*0.0174532925
    lon1= lon1*0.0174532925
    lon2= lon2*0.0174532925

    dlon = lon2-lon1
    dlat = lat2-lat1

    a = math.pow(math.sin(dlat/2),2) + math.cos(lat1) * math.cos(lat2) * math.pow(math.sin(dlon/2),2)
    c = 2 * math.asin(math.sqrt(a))
    dist = 6371 * c      -- multiply by 0.621371 to convert to miles
    return dist
end

干杯!

正如指出的那样,精确的计算应该考虑到地球不是一个完美的球体。以下是这里提供的各种算法的一些比较:

geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km

geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km

geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km

geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km

在小范围内,Keerthana的算法似乎与谷歌Maps的算法一致。谷歌Maps似乎没有遵循任何简单的算法,这表明它可能是这里最准确的方法。

不管怎样,这里是Keerthana算法的Javascript实现:

function geoDistance(lat1, lng1, lat2, lng2){
    const a = 6378.137; // equitorial radius in km
    const b = 6356.752; // polar radius in km

    var sq = x => (x*x);
    var sqr = x => Math.sqrt(x);
    var cos = x => Math.cos(x);
    var sin = x => Math.sin(x);
    var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));

    lat1 = lat1 * Math.PI / 180;
    lng1 = lng1 * Math.PI / 180;
    lat2 = lat2 * Math.PI / 180;
    lng2 = lng2 * Math.PI / 180;

    var R1 = radius(lat1);
    var x1 = R1*cos(lat1)*cos(lng1);
    var y1 = R1*cos(lat1)*sin(lng1);
    var z1 = R1*sin(lat1);

    var R2 = radius(lat2);
    var x2 = R2*cos(lat2)*cos(lng2);
    var y2 = R2*cos(lat2)*sin(lng2);
    var z2 = R2*sin(lat2);

    return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}