如何计算由经纬度指定的两点之间的距离?

为了澄清,我想用千米来表示距离;这些点使用WGS84系统,我想了解可用方法的相对准确性。


当前回答

我不喜欢添加另一个答案,但谷歌地图API v.3具有球形几何(以及更多)。在将你的WGS84转换为十进制度后,你可以这样做:

<script src="http://maps.google.com/maps/api/js?sensor=false&libraries=geometry" type="text/javascript"></script>  

distance = google.maps.geometry.spherical.computeDistanceBetween(
    new google.maps.LatLng(fromLat, fromLng), 
    new google.maps.LatLng(toLat, toLng));

关于谷歌的计算有多精确,甚至使用了什么模型都没有任何消息(尽管它说的是“球面”而不是“大地水准面”。顺便说一下,“直线”距离显然不同于一个人在地球表面旅行的距离,而这似乎是每个人都在假设的。

其他回答

计算距离——尤其是大距离——的主要挑战之一是解释地球的曲率。如果地球是平的,计算两点之间的距离就会像计算直线一样简单!哈弗辛公式包括一个常数(下面是R变量),它表示地球的半径。根据你是用英里还是公里来测量,它分别等于3956英里或6367公里。 基本公式是:

Dlon = lon2 - lon1 dat = lat2 - lat1 = (sin (dlat / 2)) ^ 2 + cos (lat1) * cos (lat2) * (sin (dlon / 2)) ^ 2 C = 2 * atan2(√(a),√(1-a)) distance = R * c(其中R为地球半径) R = 6367公里OR 3956英里

     lat1, lon1: The Latitude and Longitude of point 1 (in decimal degrees)
     lat2, lon2: The Latitude and Longitude of point 2 (in decimal degrees)
     unit: The unit of measurement in which to calculate the results where:
     'M' is statute miles (default)
     'K' is kilometers
     'N' is nautical miles

样本

function distance(lat1, lon1, lat2, lon2, unit) {
    try {
        var radlat1 = Math.PI * lat1 / 180
        var radlat2 = Math.PI * lat2 / 180
        var theta = lon1 - lon2
        var radtheta = Math.PI * theta / 180
        var dist = Math.sin(radlat1) * Math.sin(radlat2) + Math.cos(radlat1) * Math.cos(radlat2) * Math.cos(radtheta);
        dist = Math.acos(dist)
        dist = dist * 180 / Math.PI
        dist = dist * 60 * 1.1515
        if (unit == "K") {
            dist = dist * 1.609344
        }
        if (unit == "N") {
            dist = dist * 0.8684
        }
        return dist
    } catch (err) {
        console.log(err);
    }
}

正如指出的那样,精确的计算应该考虑到地球不是一个完美的球体。以下是这里提供的各种算法的一些比较:

geoDistance(50,5,58,3)
Haversine: 899 km
Maymenn: 833 km
Keerthana: 897 km
google.maps.geometry.spherical.computeDistanceBetween(): 900 km

geoDistance(50,5,-58,-3)
Haversine: 12030 km
Maymenn: 11135 km
Keerthana: 10310 km
google.maps.geometry.spherical.computeDistanceBetween(): 12044 km

geoDistance(.05,.005,.058,.003)
Haversine: 0.9169 km
Maymenn: 0.851723 km
Keerthana: 0.917964 km
google.maps.geometry.spherical.computeDistanceBetween(): 0.917964 km

geoDistance(.05,80,.058,80.3)
Haversine: 33.37 km
Maymenn: 33.34 km
Keerthana: 33.40767 km
google.maps.geometry.spherical.computeDistanceBetween(): 33.40770 km

在小范围内,Keerthana的算法似乎与谷歌Maps的算法一致。谷歌Maps似乎没有遵循任何简单的算法,这表明它可能是这里最准确的方法。

不管怎样,这里是Keerthana算法的Javascript实现:

function geoDistance(lat1, lng1, lat2, lng2){
    const a = 6378.137; // equitorial radius in km
    const b = 6356.752; // polar radius in km

    var sq = x => (x*x);
    var sqr = x => Math.sqrt(x);
    var cos = x => Math.cos(x);
    var sin = x => Math.sin(x);
    var radius = lat => sqr((sq(a*a*cos(lat))+sq(b*b*sin(lat)))/(sq(a*cos(lat))+sq(b*sin(lat))));

    lat1 = lat1 * Math.PI / 180;
    lng1 = lng1 * Math.PI / 180;
    lat2 = lat2 * Math.PI / 180;
    lng2 = lng2 * Math.PI / 180;

    var R1 = radius(lat1);
    var x1 = R1*cos(lat1)*cos(lng1);
    var y1 = R1*cos(lat1)*sin(lng1);
    var z1 = R1*sin(lat1);

    var R2 = radius(lat2);
    var x2 = R2*cos(lat2)*cos(lng2);
    var y2 = R2*cos(lat2)*sin(lng2);
    var z2 = R2*sin(lat2);

    return sqr(sq(x1-x2)+sq(y1-y2)+sq(z1-z2));
}

下面是Erlang实现

lat_lng({Lat1, Lon1}=_Point1, {Lat2, Lon2}=_Point2) ->
  P = math:pi() / 180,
  R = 6371, % Radius of Earth in KM
  A = 0.5 - math:cos((Lat2 - Lat1) * P) / 2 +
    math:cos(Lat1 * P) * math:cos(Lat2 * P) * (1 - math:cos((Lon2 - Lon1) * P))/2,
  R * 2 * math:asin(math:sqrt(A)).

Java实现在根据哈弗辛公式

double calculateDistance(double latPoint1, double lngPoint1, 
                         double latPoint2, double lngPoint2) {
    if(latPoint1 == latPoint2 && lngPoint1 == lngPoint2) {
        return 0d;
    }

    final double EARTH_RADIUS = 6371.0; //km value;

    //converting to radians
    latPoint1 = Math.toRadians(latPoint1);
    lngPoint1 = Math.toRadians(lngPoint1);
    latPoint2 = Math.toRadians(latPoint2);
    lngPoint2 = Math.toRadians(lngPoint2);

    double distance = Math.pow(Math.sin((latPoint2 - latPoint1) / 2.0), 2) 
            + Math.cos(latPoint1) * Math.cos(latPoint2)
            * Math.pow(Math.sin((lngPoint2 - lngPoint1) / 2.0), 2);
    distance = 2.0 * EARTH_RADIUS * Math.asin(Math.sqrt(distance));

    return distance; //km value
}

在其他答案中,r中的实现是缺失的。

用地质圈包中的distm函数计算两点之间的距离非常简单:

distm(p1, p2, fun = distHaversine)

地点:

p1 = longitude/latitude for point(s)
p2 = longitude/latitude for point(s)
# type of distance calculation
fun = distCosine / distHaversine / distVincentySphere / distVincentyEllipsoid 

由于地球不是完美的球形,所以椭球体的文森提公式可能是计算距离的最佳方法。因此,在地质圈包中,您可以使用:

distm(p1, p2, fun = distVincentyEllipsoid)

当然,你不一定要使用geosphere包,你也可以用一个函数来计算以R为基底的距离:

hav.dist <- function(long1, lat1, long2, lat2) {
  R <- 6371
  diff.long <- (long2 - long1)
  diff.lat <- (lat2 - lat1)
  a <- sin(diff.lat/2)^2 + cos(lat1) * cos(lat2) * sin(diff.long/2)^2
  b <- 2 * asin(pmin(1, sqrt(a))) 
  d = R * b
  return(d)
}