我知道pip是python包的包管理器。但是,我在IPython的网站上看到了使用conda安装IPython的安装。

我可以用pip安装IPython吗?当我已经有pip时,为什么我要使用conda作为另一个python包管理器?

pip和conda的区别是什么?


当前回答

免责声明:这个答案描述的是十年前的情况,当时pip还不支持二进制包。Conda是专门为更好地支持构建和分发二进制包而创建的,特别是带有C扩展的数据科学库。作为参考,pip只获得了带轮子的便携式二进制包的广泛支持(2013年的pip 1.4)和manylinux1规范(2016年3月的pip 8.1)。查看最近的答案了解更多历史。

以下是一个简短的概述:

pip

只支持Python包。 从源代码编译所有内容。编辑:pip现在安装二进制车轮,如果他们是可用的。 受到核心Python社区的支持(即Python 3.4+包含自动引导pip的代码)。

conda

Python agnostic. The main focus of existing packages are for Python, and indeed Conda itself is written in Python, but you can also have Conda packages for C libraries, or R packages, or really anything. Installs binaries. There is a tool called conda build that builds packages from source, but conda install itself installs things from already built Conda packages. External. conda is an environment and package manager. It is included in the Anaconda Python distribution provided by Continuum Analytics (now called Anaconda, Inc.).

conda is an environment manager written in Python and is language-agnostic. conda environment management functions cover the functionality provided by venv, virtualenv, pipenv, pyenv, and other Python-specific package managers. You could use conda within an existing Python installation by pip installing it (though this is not recommended unless you have a good reason to use an existing installation). As of 2022, conda and pip are not fully aware of one another package management activities within a virtual environment, not are they interoperable for Python package management.

在这两种情况下:

用Python编写 开源(conda是BSD, pip是MIT) 警告:虽然conda本身是开源的,但包存储库由Anaconda Inc托管,并且在商业使用方面有限制。

The first two bullet points of conda are really what make it advantageous over pip for many packages. Since pip installs from source, it can be painful to install things with it if you are unable to compile the source code (this is especially true on Windows, but it can even be true on Linux if the packages have some difficult C or FORTRAN library dependencies). conda installs from binary, meaning that someone (e.g., Continuum) has already done the hard work of compiling the package, and so the installation is easy.

如果您对构建自己的包感兴趣,也有一些不同之处。例如,pip构建在setuptools之上,而conda使用自己的格式,这有一些优点(比如是静态的,并且与Python无关)。

其他回答

免责声明:这个答案描述的是十年前的情况,当时pip还不支持二进制包。Conda是专门为更好地支持构建和分发二进制包而创建的,特别是带有C扩展的数据科学库。作为参考,pip只获得了带轮子的便携式二进制包的广泛支持(2013年的pip 1.4)和manylinux1规范(2016年3月的pip 8.1)。查看最近的答案了解更多历史。

以下是一个简短的概述:

pip

只支持Python包。 从源代码编译所有内容。编辑:pip现在安装二进制车轮,如果他们是可用的。 受到核心Python社区的支持(即Python 3.4+包含自动引导pip的代码)。

conda

Python agnostic. The main focus of existing packages are for Python, and indeed Conda itself is written in Python, but you can also have Conda packages for C libraries, or R packages, or really anything. Installs binaries. There is a tool called conda build that builds packages from source, but conda install itself installs things from already built Conda packages. External. conda is an environment and package manager. It is included in the Anaconda Python distribution provided by Continuum Analytics (now called Anaconda, Inc.).

conda is an environment manager written in Python and is language-agnostic. conda environment management functions cover the functionality provided by venv, virtualenv, pipenv, pyenv, and other Python-specific package managers. You could use conda within an existing Python installation by pip installing it (though this is not recommended unless you have a good reason to use an existing installation). As of 2022, conda and pip are not fully aware of one another package management activities within a virtual environment, not are they interoperable for Python package management.

在这两种情况下:

用Python编写 开源(conda是BSD, pip是MIT) 警告:虽然conda本身是开源的,但包存储库由Anaconda Inc托管,并且在商业使用方面有限制。

The first two bullet points of conda are really what make it advantageous over pip for many packages. Since pip installs from source, it can be painful to install things with it if you are unable to compile the source code (this is especially true on Windows, but it can even be true on Linux if the packages have some difficult C or FORTRAN library dependencies). conda installs from binary, meaning that someone (e.g., Continuum) has already done the hard work of compiling the package, and so the installation is easy.

如果您对构建自己的包感兴趣,也有一些不同之处。例如,pip构建在setuptools之上,而conda使用自己的格式,这有一些优点(比如是静态的,并且与Python无关)。

pip仅用于Python

conda只适用于Anaconda +其他科学包,如R依赖等。并不是每个人都需要蟒蛇,因为它已经和Python一起出现了。Anaconda主要是为那些做机器学习/深度学习等的人准备的。普通的Python开发人员不会在他的笔记本电脑上运行Anaconda。

要回答最初的问题, 对于安装包,PIP和Conda是完成相同任务的不同方式。两者都是安装包的标准应用程序。主要的区别是包文件的来源。

PIP/PyPI将有更多的“实验性”包,或者更新的、不太常见的包版本 Conda通常会有更完善的包或版本

一个重要的警告提示:如果使用两个源(pip和conda)在同一环境中安装包,以后可能会导致问题。

重建环境将更加困难 修复包不兼容性变得更加复杂

最佳实践是选择一个应用程序(PIP或Conda)来安装包,并使用该应用程序安装所需的任何包。 然而,仍然有许多例外或理由在conda环境中使用pip,反之亦然。 例如:

如果您需要的包只存在于一个包上,则 其他人没有。 您需要一个只在一个环境中可用的特定版本

PIP是一个包管理器。

Conda既是包管理器,也是环境管理器。

细节:

依赖项检查

Pip and conda also differ in how dependency relationships within an environment are fulfilled. When installing packages, pip installs dependencies in a recursive, serial loop. No effort is made to ensure that the dependencies of all packages are fulfilled simultaneously. This can lead to environments that are broken in subtle ways, if packages installed earlier in the order have incompatible dependency versions relative to packages installed later in the order. In contrast, conda uses a satisfiability (SAT) solver to verify that all requirements of all packages installed in an environment are met. This check can take extra time but helps prevent the creation of broken environments. As long as package metadata about dependencies is correct, conda will predictably produce working environments.

参考文献

理解康达和皮普

为了不让你们更困惑, 但是你也可以在conda环境中使用PIP,它会验证上面的一般管理器注释和特定于python的管理器注释。

conda install -n testenv pip
source activate testenv
pip <pip command>

您还可以将PIP添加到任何环境的默认包中,以便每次都显示它,这样您就不必遵循上面的代码段。