我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
我如何计算以下数组中的0和1的数量?
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.count(0)为:
numpy。Ndarray对象没有属性计数
当前回答
你有一个只有1和0的特殊数组。一个技巧就是使用
np.mean(x)
也就是数组中1的百分比。另外,使用
np.sum(x)
np.sum(1-x)
会给出数组中1和0的绝对值。
其他回答
你有一个只有1和0的特殊数组。一个技巧就是使用
np.mean(x)
也就是数组中1的百分比。另外,使用
np.sum(x)
np.sum(1-x)
会给出数组中1和0的绝对值。
将数组y转换为列表l,然后执行l.count(1)和l.count(0)
>>> y = numpy.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
>>> l = list(y)
>>> l.count(1)
4
>>> l.count(0)
8
y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
如果你知道它们是0和1
np.sum(y)
给出1的个数。Np.sum (1-y)给出0。
一般来说,如果你想计算0而不是0(但可能是2或3):
np.count_nonzero(y)
给出非零的个数。
但是如果您需要更复杂的东西,我不认为numpy将提供一个很好的计数选项。在这种情况下,转到集合:
import collections
collections.Counter(y)
> Counter({0: 8, 1: 4})
这就像字典一样
collections.Counter(y)[0]
> 8
using numpy.count
$ a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
$ np.count(a, 1)
对于一般条目:
x = np.array([11, 2, 3, 5, 3, 2, 16, 10, 10, 3, 11, 4, 5, 16, 3, 11, 4])
n = {i:len([j for j in np.where(x==i)[0]]) for i in set(x)}
ix = {i:[j for j in np.where(x==i)[0]] for i in set(x)}
将输出一个计数:
{2: 2, 3: 4, 4: 2, 5: 2, 10: 2, 11: 3, 16: 2}
和指标:
{2: [1, 5],
3: [2, 4, 9, 14],
4: [11, 16],
5: [3, 12],
10: [7, 8],
11: [0, 10, 15],
16: [6, 13]}