我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

这可以用下面的方法轻松完成

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
y.tolist().count(1)

其他回答

dict(zip(*numpy.unique(y, return_counts=True)))

只是复制了Seppo Enarvi的评论,这应该是一个正确的答案

如果你不想使用numpy或collections模块,你可以使用字典:

d = dict()
a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]
for item in a:
    try:
        d[item]+=1
    except KeyError:
        d[item]=1

结果:

>>>d
{0: 8, 1: 4}

当然,你也可以使用if/else语句。 我认为Counter函数做了几乎相同的事情,但这个更透明。

使用numpy怎么样?count_non0,类似的

>>> import numpy as np
>>> y = np.array([1, 2, 2, 2, 2, 0, 2, 3, 3, 3, 0, 0, 2, 2, 0])

>>> np.count_nonzero(y == 1)
1
>>> np.count_nonzero(y == 2)
7
>>> np.count_nonzero(y == 3)
3

试试这个:

a = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
list(a).count(1)

要计算出现的次数,可以使用np。独特的(数组,return_counts = True):

In [75]: boo = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])
 
# use bool value `True` or equivalently `1`
In [77]: uniq, cnts = np.unique(boo, return_counts=1)
In [81]: uniq
Out[81]: array([0, 1])   #unique elements in input array are: 0, 1

In [82]: cnts
Out[82]: array([8, 4])   # 0 occurs 8 times, 1 occurs 4 times