我如何计算以下数组中的0和1的数量?

y = np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])

y.count(0)为:

numpy。Ndarray对象没有属性计数


当前回答

如果你确切地知道你要找的数字,你可以使用下面的方法;

lst = np.array([1,1,2,3,3,6,6,6,3,2,1])
(lst == 2).sum()

返回2在数组中出现的次数。

其他回答

这里我有一些东西,通过它你可以计算特定数字的出现次数: 根据你的代码

count_of_zero=list(y[y==0]).count(0) 

print(count_of_zero)

// according to the match there will be boolean values and according
// to True value the number 0 will be return.

使用numpy怎么样?count_non0,类似的

>>> import numpy as np
>>> y = np.array([1, 2, 2, 2, 2, 0, 2, 3, 3, 3, 0, 0, 2, 2, 0])

>>> np.count_nonzero(y == 1)
1
>>> np.count_nonzero(y == 2)
7
>>> np.count_nonzero(y == 3)
3

老实说,我发现最容易转换为熊猫系列或DataFrame:

import pandas as pd
import numpy as np

df = pd.DataFrame({'data':np.array([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1])})
print df['data'].value_counts()

或者是Robert Muil的一句俏皮话:

pd.Series([0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]).value_counts()

使用numpy.unique:

import numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
unique, counts = numpy.unique(a, return_counts=True)

>>> dict(zip(unique, counts))
{0: 7, 1: 4, 2: 1, 3: 2, 4: 1}

使用collections.Counter的非numpy方法;

import collections, numpy
a = numpy.array([0, 3, 0, 1, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 4])
counter = collections.Counter(a)

>>> counter
Counter({0: 7, 1: 4, 3: 2, 2: 1, 4: 1})
using numpy.count

$ a = [0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1]

$ np.count(a, 1)