最近我参加了一个面试,面试官要求我“编写一个程序,从一个包含10亿个数字的数组中找出100个最大的数字”。

我只能给出一个蛮力解决方案,即以O(nlogn)时间复杂度对数组进行排序,并取最后100个数字。

Arrays.sort(array);

面试官正在寻找一个更好的时间复杂度,我尝试了几个其他的解决方案,但都没有回答他。有没有更好的时间复杂度解决方案?


当前回答

我意识到这被标记为“算法”,但会抛出一些其他选项,因为它可能也应该被标记为“面试”。

10亿个数字的来源是什么?如果它是一个数据库,那么“从表中按值顺序选择值desc limit 100”就可以很好地完成工作-可能有方言差异。

这是一次性的,还是会重复发生?如果重复,频率是多少?如果它是一次性的,数据在一个文件中,那么'cat srcfile | sort(根据需要选择)| head -100'将让你快速完成有偿工作,而计算机处理这些琐碎的琐事。

如果重复,你会建议选择任何合适的方法来获得初始答案并存储/缓存结果,这样你就可以连续地报告前100名。

Finally, there is this consideration. Are you looking for an entry level job and interviewing with a geeky manager or future co-worker? If so, then you can toss out all manner of approaches describing the relative technical pros and cons. If you are looking for a more managerial job, then approach it like a manager would, concerned with the development and maintenance costs of the solution, and say "thank you very much" and leave if that is the interviewer wants to focus on CS trivia. He and you would be unlikely to have much advancement potential there.

祝你下次面试好运。

其他回答

求n个元素中最大的m个元素,其中n >>> m

最简单的解决方案,每个人都应该很明显,就是简单地做m次冒泡排序算法。

然后打印出数组的最后n个元素。

它不需要外部数据结构,并且使用了一种大家都知道的算法。

运行时间估计为O(m*n)。到目前为止最好的答案是O(nlog (m)),所以这个解决方案对于小m来说并不显着昂贵。

我并不是说这不能改进,但这是迄今为止最简单的解决方案。

我用Python写了一个简单的解决方案,以防有人感兴趣。它使用bisect模块和一个临时返回列表,它保持排序。这类似于优先级队列实现。

import bisect

def kLargest(A, k):
    '''returns list of k largest integers in A'''
    ret = []
    for i, a in enumerate(A):
        # For first k elements, simply construct sorted temp list
        # It is treated similarly to a priority queue
        if i < k:
            bisect.insort(ret, a) # properly inserts a into sorted list ret
        # Iterate over rest of array
        # Replace and update return array when more optimal element is found
        else:
            if a > ret[0]:
                del ret[0] # pop min element off queue
                bisect.insort(ret, a) # properly inserts a into sorted list ret
    return ret

使用100,000,000个元素和最坏情况输入是一个排序列表:

>>> from so import kLargest
>>> kLargest(range(100000000), 100)
[99999900, 99999901, 99999902, 99999903, 99999904, 99999905, 99999906, 99999907,
 99999908, 99999909, 99999910, 99999911, 99999912, 99999913, 99999914, 99999915,
 99999916, 99999917, 99999918, 99999919, 99999920, 99999921, 99999922, 99999923,
 99999924, 99999925, 99999926, 99999927, 99999928, 99999929, 99999930, 99999931,
 99999932, 99999933, 99999934, 99999935, 99999936, 99999937, 99999938, 99999939,
 99999940, 99999941, 99999942, 99999943, 99999944, 99999945, 99999946, 99999947,
 99999948, 99999949, 99999950, 99999951, 99999952, 99999953, 99999954, 99999955,
 99999956, 99999957, 99999958, 99999959, 99999960, 99999961, 99999962, 99999963,
 99999964, 99999965, 99999966, 99999967, 99999968, 99999969, 99999970, 99999971,
 99999972, 99999973, 99999974, 99999975, 99999976, 99999977, 99999978, 99999979,
 99999980, 99999981, 99999982, 99999983, 99999984, 99999985, 99999986, 99999987,
 99999988, 99999989, 99999990, 99999991, 99999992, 99999993, 99999994, 99999995,
 99999996, 99999997, 99999998, 99999999]

我花了40秒计算1亿个元素,所以我不敢计算10亿个元素。为了公平起见,我给它提供了最坏情况的输入(具有讽刺意味的是,一个已经排序的数组)。

取十亿个数字中的前一百个,然后排序。现在只需遍历十亿,如果源数大于100中最小的数,则按排序顺序插入。你得到的结果更接近于O(n)除以集合的大小。

你可以遍历这些数字,需要O(n)

只要发现一个大于当前最小值的值,就将新值添加到一个大小为100的循环队列中。

循环队列的最小值就是新的比较值。继续往队列中添加。如果已满,则从队列中提取最小值。

I would find out who had the time to put a billion numbers into an array and fire him. Must work for government. At least if you had a linked list you could insert a number into the middle without moving half a billion to make room. Even better a Btree allows for a binary search. Each comparison eliminates half of your total. A hash algorithm would allow you to populate the data structure like a checkerboard but not so good for sparse data. As it is your best bet is to have a solution array of 100 integers and keep track of the lowest number in your solution array so you can replace it when you come across a higher number in the original array. You would have to look at every element in the original array assuming it is not sorted to begin with.