我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?
当前回答
我认为这也是可行的:
int power = 1;
while(power < x)
power*=2;
答案就是力量。
其他回答
/*
** http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog
*/
#define __LOG2A(s) ((s &0xffffffff00000000) ? (32 +__LOG2B(s >>32)): (__LOG2B(s)))
#define __LOG2B(s) ((s &0xffff0000) ? (16 +__LOG2C(s >>16)): (__LOG2C(s)))
#define __LOG2C(s) ((s &0xff00) ? (8 +__LOG2D(s >>8)) : (__LOG2D(s)))
#define __LOG2D(s) ((s &0xf0) ? (4 +__LOG2E(s >>4)) : (__LOG2E(s)))
#define __LOG2E(s) ((s &0xc) ? (2 +__LOG2F(s >>2)) : (__LOG2F(s)))
#define __LOG2F(s) ((s &0x2) ? (1) : (0))
#define LOG2_UINT64 __LOG2A
#define LOG2_UINT32 __LOG2B
#define LOG2_UINT16 __LOG2C
#define LOG2_UINT8 __LOG2D
static inline uint64_t
next_power_of_2(uint64_t i)
{
#if defined(__GNUC__)
return 1UL <<(1 +(63 -__builtin_clzl(i -1)));
#else
i =i -1;
i =LOG2_UINT64(i);
return 1UL <<(1 +i);
#endif
}
如果你不想冒险进入未定义行为的领域,输入值必须在1到2^63之间。宏在编译时设置常量也很有用。
将其转换为浮点数,然后使用.hex()来显示标准化的IEEE表示。
> > >(789)浮动.hex () “0 x1.8a80000000000p + 9”
然后提取指数,再加1。
>>> int(float(789).hex().split('p+')[1]) + 1 10
取2的这个次方。
> > > 2 * * (int (float(789)。hex(),斯普利特(“p +”)[1])+ 1) 1024
在标准c++20中,这包含在<bit>中。 答案很简单
#include <bit>
unsigned long upper_power_of_two(unsigned long v)
{
return std::bit_ceil(v);
}
注意: 我给出的解决方案是针对c++,而不是c,我会给出这个问题的答案,但它是这个问题的副本!
我试着找到最接近2的次幂,然后写出这个函数。希望它能帮助你。只要用最近的小数乘以2,就能得到2的最近上次方
int nearest_upper_power(int number){
int temp=number;
while((number&(number-1))!=0){
temp<<=1;
number&=temp;
}
//Here number is closest lower power
number*=2;
return number;
}
将保罗·迪克森的答案应用到Excel中,效果非常好。
=POWER(2,CEILING.MATH(LOG(A1)/LOG(2)))