我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?
当前回答
c++ 14 clp2的constexpr版本
#include <iostream>
#include <type_traits>
// Closest least power of 2 minus 1. Returns 0 if n = 0.
template <typename UInt, std::enable_if_t<std::is_unsigned<UInt>::value,int> = 0>
constexpr UInt clp2m1(UInt n, unsigned i = 1) noexcept
{ return i < sizeof(UInt) * 8 ? clp2m1(UInt(n | (n >> i)),i << 1) : n; }
/// Closest least power of 2 minus 1. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value && std::is_signed<Int>::value,int> = 0>
constexpr auto clp2m1(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n <= 0 ? 0 : n)); }
/// Closest least power of 2. Returns 2^N: 2^(N-1) < n <= 2^N. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto clp2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n-1)) + 1; }
/// Next power of 2. Returns 2^N: 2^(N-1) <= n < 2^N. Returns 1 if n = 0. Returns 0 if n < 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto np2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n)) + 1; }
template <typename T>
void test(T v) { std::cout << clp2(v) << std::endl; }
int main()
{
test(-5); // 0
test(0); // 0
test(8); // 8
test(31); // 32
test(33); // 64
test(789); // 1024
test(char(260)); // 4
test(unsigned(-1) - 1); // 0
test<long long>(unsigned(-1) - 1); // 4294967296
return 0;
}
其他回答
from math import ceil, log2
pot_ceil = lambda N: 0x1 << ceil(log2(N))
测试:
for i in range(10):
print(i, pot_ceil(i))
输出:
1 1
2 2
3 4
4 4
5 8
6 8
7 8
8 8
9 16
10 16
unsigned long upper_power_of_two(unsigned long v)
{
v--;
v |= v >> 1;
v |= v >> 2;
v |= v >> 4;
v |= v >> 8;
v |= v >> 16;
v++;
return v;
}
我认为这也是可行的:
int power = 1;
while(power < x)
power*=2;
答案就是力量。
这是我用c语言的解决方案,希望能有所帮助!
int next_power_of_two(int n) {
int i = 0;
for (--n; n > 0; n >>= 1) {
i++;
}
return 1 << i;
}
为了完整起见,这里是用标准C语言实现的浮点数。
double next_power_of_two(double value) {
int exp;
if(frexp(value, &exp) == 0.5) {
// Omit this case to round precise powers of two up to the *next* power
return value;
}
return ldexp(1.0, exp);
}