我想写一个函数,返回最接近的2的次幂数。例如,如果我的输入是789,输出应该是1024。有没有办法不使用任何循环,而只是使用一些位运算符?
当前回答
c#中的可移植解决方案:
int GetNextPowerOfTwo(int input) {
return 1 << (int)Math.Ceiling(Math.Log2(input));
}
Math.Ceiling(Math.Log2(value))计算2的下一个幂的指数,1 <<通过移位计算实值。
更快的解决方案,如果你有。net Core 3或更高版本:
uint GetNextPowerOfTwoFaster(uint input) {
return (uint)1 << (sizeof(uint) * 8 - System.Numerics.BitOperations.LeadingZeroCount(input - 1));
}
这将使用system . numbers . bitoperations . leadingzerocount(),如果可用,则使用硬件指令:
https://github.com/dotnet/corert/blob/master/src/System.Private.CoreLib/shared/System/Numerics/BitOperations.cs
更新:
RoundUpToPowerOf2()即将在。net 6!内部实现与上面的. net Core 3解决方案基本相同。
这里是社区更新。
其他回答
如果你需要OpenGL相关的东西:
/* Compute the nearest power of 2 number that is
* less than or equal to the value passed in.
*/
static GLuint
nearestPower( GLuint value )
{
int i = 1;
if (value == 0) return -1; /* Error! */
for (;;) {
if (value == 1) return i;
else if (value == 3) return i*4;
value >>= 1; i *= 2;
}
}
c++ 14 clp2的constexpr版本
#include <iostream>
#include <type_traits>
// Closest least power of 2 minus 1. Returns 0 if n = 0.
template <typename UInt, std::enable_if_t<std::is_unsigned<UInt>::value,int> = 0>
constexpr UInt clp2m1(UInt n, unsigned i = 1) noexcept
{ return i < sizeof(UInt) * 8 ? clp2m1(UInt(n | (n >> i)),i << 1) : n; }
/// Closest least power of 2 minus 1. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value && std::is_signed<Int>::value,int> = 0>
constexpr auto clp2m1(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n <= 0 ? 0 : n)); }
/// Closest least power of 2. Returns 2^N: 2^(N-1) < n <= 2^N. Returns 0 if n <= 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto clp2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n-1)) + 1; }
/// Next power of 2. Returns 2^N: 2^(N-1) <= n < 2^N. Returns 1 if n = 0. Returns 0 if n < 0.
template <typename Int, std::enable_if_t<std::is_integral<Int>::value,int> = 0>
constexpr auto np2(Int n) noexcept
{ return clp2m1(std::make_unsigned_t<Int>(n)) + 1; }
template <typename T>
void test(T v) { std::cout << clp2(v) << std::endl; }
int main()
{
test(-5); // 0
test(0); // 0
test(8); // 8
test(31); // 32
test(33); // 64
test(789); // 1024
test(char(260)); // 4
test(unsigned(-1) - 1); // 0
test<long long>(unsigned(-1) - 1); // 4294967296
return 0;
}
from math import ceil, log2
pot_ceil = lambda N: 0x1 << ceil(log2(N))
测试:
for i in range(10):
print(i, pot_ceil(i))
输出:
1 1
2 2
3 4
4 4
5 8
6 8
7 8
8 8
9 16
10 16
许多处理器架构都支持log以2为底或非常类似的操作——计数前导零。许多编译器都有针对它的内在特性。参见https://en.wikipedia.org/wiki/Find_first_set
g++编译器提供了一个内置函数__builtin_clz,用于计算前导零:
所以我们可以这样做:
int nextPowerOfTwo(unsigned int x) {
return 1 << sizeof(x)*8 - __builtin_clz(x);
}
int main () {
std::cout << nextPowerOfTwo(7) << std::endl;
std::cout << nextPowerOfTwo(31) << std::endl;
std::cout << nextPowerOfTwo(33) << std::endl;
std::cout << nextPowerOfTwo(8) << std::endl;
std::cout << nextPowerOfTwo(91) << std::endl;
return 0;
}
结果:
8
32
64
16
128
但请注意,对于x == 0, __builtin_clz return是未定义的。