找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

基于Mark Byers的回答,我的python实现:

def permutations(string):
    if len(string) == 1:
        return [string]
    permutations=[]
    for i in range(len(string)):
        for perm in permutations(string[:i]+string[i+1:]):
            permutations.append(string[i] + perm)
    return permutations

其他回答

public static void permutation(String str) { 
    permutation("", str); 
}

private static void permutation(String prefix, String str) {
    int n = str.length();
    if (n == 0) System.out.println(prefix);
    else {
        for (int i = 0; i < n; i++)
            permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n));
    }
}

(通过Java编程入门)

使用递归的简单python解决方案。

def get_permutations(string):

    # base case
    if len(string) <= 1:
        return set([string])

    all_chars_except_last = string[:-1]
    last_char = string[-1]

    # recursive call: get all possible permutations for all chars except last
    permutations_of_all_chars_except_last = get_permutations(all_chars_except_last)

    # put the last char in all possible positions for each of the above permutations
    permutations = set()
    for permutation_of_all_chars_except_last in permutations_of_all_chars_except_last:
        for position in range(len(all_chars_except_last) + 1):
            permutation = permutation_of_all_chars_except_last[:position] + last_char + permutation_of_all_chars_except_last[position:]
            permutations.add(permutation)

    return permutations

这里有一个优雅的,非递归的O(n!)解:

public static StringBuilder[] permutations(String s) {
        if (s.length() == 0)
            return null;
        int length = fact(s.length());
        StringBuilder[] sb = new StringBuilder[length];
        for (int i = 0; i < length; i++) {
            sb[i] = new StringBuilder();
        }
        for (int i = 0; i < s.length(); i++) {
            char ch = s.charAt(i);
            int times = length / (i + 1);
            for (int j = 0; j < times; j++) {
                for (int k = 0; k < length / times; k++) {
                    sb[j * length / times + k].insert(k, ch);
                }
            }
        }
        return sb;
    }

我们可以用阶乘来计算有多少字符串以某个字母开头。

示例:取输入abcd。(3!) == 6个字符串将以abcd中的每个字母开头。

static public int facts(int x){
    int sum = 1;
    for (int i = 1; i < x; i++) {
        sum *= (i+1);
    }
    return sum;
}

public static void permutation(String str) {
    char[] str2 = str.toCharArray();
    int n = str2.length;
    int permutation = 0;
    if (n == 1) {
        System.out.println(str2[0]);
    } else if (n == 2) {
        System.out.println(str2[0] + "" + str2[1]);
        System.out.println(str2[1] + "" + str2[0]);
    } else {
        for (int i = 0; i < n; i++) {
            if (true) {
                char[] str3 = str.toCharArray();
                char temp = str3[i];
                str3[i] = str3[0];
                str3[0] = temp;
                str2 = str3;
            }

            for (int j = 1, count = 0; count < facts(n-1); j++, count++) {
                if (j != n-1) {
                    char temp1 = str2[j+1];
                    str2[j+1] = str2[j];
                    str2[j] = temp1;
                } else {
                    char temp1 = str2[n-1];
                    str2[n-1] = str2[1];
                    str2[1] = temp1;
                    j = 1;
                } // end of else block
                permutation++;
                System.out.print("permutation " + permutation + " is   -> ");
                for (int k = 0; k < n; k++) {
                    System.out.print(str2[k]);
                } // end of loop k
                System.out.println();
            } // end of loop j
        } // end of loop i
    }
}
import java.io.*;
public class Anagram {

public static void main(String[] args) {
      java.util.Scanner sc=new java.util.Scanner(System.in);
            PrintWriter p=new PrintWriter(System.out,true);
            p.println("Enter Word");
            String a[],s="",st;boolean flag=true;
            int in[],n,nf=1,i,j=0,k,m=0;
            char l[];
            st=sc.next();
            p.println("Anagrams");
            p.println("1 . "+st);
            l=st.toCharArray();
            n=st.length();
            for(i=1;i<=n;i++){
                nf*=i;
            }

            i=1;
            a=new String[nf];
            in=new int[n];
            a[0]=st;
            while(i<nf){
                for(m=0;m<n;m++){
                    in[m]=n;
                }j=0;
                while(j<n){
                    k=(int)(n*Math.random());

                    for(m=0;m<=j;m++){
                        if(k==in[m]){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        in[j++]=k;
                    }flag=true;
                }s="";
                for(j=0;j<n;j++){
                    s+=l[in[j]];
                }

                //Removing same words
                for(m=0;m<=i;m++){
                        if(s.equalsIgnoreCase(a[m])){
                            flag=false;
                            break;          
                        }
                    }
                    if(flag==true){
                        a[i++]=s;
                        p.println(i+" . "+a[i-1]);
                    }flag=true;

            }

    }
}