找出弦的所有排列的优雅方法是什么。例如,ba的排列,将是ba和ab,但更长的字符串,如abcdefgh?是否有Java实现示例?


当前回答

使用递归的简单python解决方案。

def get_permutations(string):

    # base case
    if len(string) <= 1:
        return set([string])

    all_chars_except_last = string[:-1]
    last_char = string[-1]

    # recursive call: get all possible permutations for all chars except last
    permutations_of_all_chars_except_last = get_permutations(all_chars_except_last)

    # put the last char in all possible positions for each of the above permutations
    permutations = set()
    for permutation_of_all_chars_except_last in permutations_of_all_chars_except_last:
        for position in range(len(all_chars_except_last) + 1):
            permutation = permutation_of_all_chars_except_last[:position] + last_char + permutation_of_all_chars_except_last[position:]
            permutations.add(permutation)

    return permutations

其他回答

使用递归。

依次尝试每个字母作为第一个字母,然后使用递归调用找到剩余字母的所有排列。 基本情况是,当输入是空字符串时,唯一的排列就是空字符串。

下面是两个c#版本(仅供参考): 1. 打印所有排列 2. 返回所有排列

算法的基本要点是(可能下面的代码更直观-尽管如此,下面的代码是做什么的一些解释): -从当前索引到集合的其余部分,交换当前索引处的元素 -递归地获得下一个索引中剩余元素的排列 -恢复秩序,通过重新交换

注意:上述递归函数将从起始索引中调用。

private void PrintAllPermutations(int[] a, int index, ref int count)
        {
            if (index == (a.Length - 1))
            {
                count++;
                var s = string.Format("{0}: {1}", count, string.Join(",", a));
                Debug.WriteLine(s);
            }
            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                this.PrintAllPermutations(a, index + 1, ref count);
                Utilities.swap(ref a[i], ref a[index]);
            }
        }
        private int PrintAllPermutations(int[] a)
        {
            a.ThrowIfNull("a");
            int count = 0;
            this.PrintAllPermutations(a, index:0, count: ref count);
            return count;
        }

版本2(与上面相同-但返回排列而不是打印)

private int[][] GetAllPermutations(int[] a, int index)
        {
            List<int[]> permutations = new List<int[]>();
            if (index == (a.Length - 1))
            {
                permutations.Add(a.ToArray());
            }

            for (int i = index; i < a.Length; i++)
            {
                Utilities.swap(ref a[i], ref a[index]);
                var r = this.GetAllPermutations(a, index + 1);
                permutations.AddRange(r);
                Utilities.swap(ref a[i], ref a[index]);
            }
            return permutations.ToArray();
        }
        private int[][] GetAllPermutations(int[] p)
        {
            p.ThrowIfNull("p");
            return this.GetAllPermutations(p, 0);
        }

单元测试

[TestMethod]
        public void PermutationsTests()
        {
            List<int> input = new List<int>();
            int[] output = { 0, 1, 2, 6, 24, 120 };
            for (int i = 0; i <= 5; i++)
            {
                if (i != 0)
                {
                    input.Add(i);
                }
                Debug.WriteLine("================PrintAllPermutations===================");
                int count = this.PrintAllPermutations(input.ToArray());
                Assert.IsTrue(count == output[i]);
                Debug.WriteLine("=====================GetAllPermutations=================");
                var r = this.GetAllPermutations(input.ToArray());
                Assert.IsTrue(count == r.Length);
                for (int j = 1; j <= r.Length;j++ )
                {
                    string s = string.Format("{0}: {1}", j,
                        string.Join(",", r[j - 1]));
                    Debug.WriteLine(s);
                }
                Debug.WriteLine("No.OfElements: {0}, TotalPerms: {1}", i, count);
            }
        }

这里有一个优雅的,非递归的O(n!)解:

public static StringBuilder[] permutations(String s) {
        if (s.length() == 0)
            return null;
        int length = fact(s.length());
        StringBuilder[] sb = new StringBuilder[length];
        for (int i = 0; i < length; i++) {
            sb[i] = new StringBuilder();
        }
        for (int i = 0; i < s.length(); i++) {
            char ch = s.charAt(i);
            int times = length / (i + 1);
            for (int j = 0; j < times; j++) {
                for (int k = 0; k < length / times; k++) {
                    sb[j * length / times + k].insert(k, ch);
                }
            }
        }
        return sb;
    }

没有递归的Java实现

public Set<String> permutate(String s){
    Queue<String> permutations = new LinkedList<String>();
    Set<String> v = new HashSet<String>();
    permutations.add(s);

    while(permutations.size()!=0){
        String str = permutations.poll();
        if(!v.contains(str)){
            v.add(str);
            for(int i = 0;i<str.length();i++){
                String c = String.valueOf(str.charAt(i));
                permutations.add(str.substring(i+1) + c +  str.substring(0,i));
            }
        }
    }
    return v;
}

在python中

def perms(in_str, prefix=""):
if not len(in_str) :
    print(prefix)
else:        
    for i in range(0, len(in_str)):
        perms(in_str[:i] + in_str[i + 1:], prefix + in_str[i])

perms('ASD')