我有一个熊猫数据帧df像:

a b
A 1
A 2
B 5
B 5
B 4
C 6

我想按第一列分组,并将第二列作为行中的列表:

A [1,2]
B [5,5,4]
C [6]

是否有可能使用pandas groupby来做这样的事情?


当前回答

如果在分组多个列时寻找一个唯一的列表,这可能会有所帮助:

df.groupby('a').agg(lambda x: list(set(x))).reset_index()

其他回答

就像你说的pd的groupby方法。DataFrame对象可以做这项工作。

例子

 L = ['A','A','B','B','B','C']
 N = [1,2,5,5,4,6]

 import pandas as pd
 df = pd.DataFrame(zip(L,N),columns = list('LN'))


 groups = df.groupby(df.L)

 groups.groups
      {'A': [0, 1], 'B': [2, 3, 4], 'C': [5]}

它给出了组的索引级描述。

例如,要获取单个组的元素,您可以这样做

 groups.get_group('A')

     L  N
  0  A  1
  1  A  2

  groups.get_group('B')

     L  N
  2  B  5
  3  B  5
  4  B  4

这里我用“|”作为分隔符对元素进行分组

    import pandas as pd

    df = pd.read_csv('input.csv')

    df
    Out[1]:
      Area  Keywords
    0  A  1
    1  A  2
    2  B  5
    3  B  5
    4  B  4
    5  C  6

    df.dropna(inplace =  True)
    df['Area']=df['Area'].apply(lambda x:x.lower().strip())
    print df.columns
    df_op = df.groupby('Area').agg({"Keywords":lambda x : "|".join(x)})

    df_op.to_csv('output.csv')
    Out[2]:
    df_op
    Area  Keywords

    A       [1| 2]
    B    [5| 5| 4]
    C          [6]

只是一个补充。熊猫。数据透视表更通用,似乎更方便:

"""data"""
df = pd.DataFrame( {'a':['A','A','B','B','B','C'],
                    'b':[1,2,5,5,4,6],
                    'c':[1,2,1,1,1,6]})
print(df)

   a  b  c
0  A  1  1
1  A  2  2
2  B  5  1
3  B  5  1
4  B  4  1
5  C  6  6
"""pivot_table"""
pt = pd.pivot_table(df,
                    values=['b', 'c'],
                    index='a',
                    aggfunc={'b': list,
                             'c': set})
print(pt)
           b       c
a                   
A     [1, 2]  {1, 2}
B  [5, 5, 4]     {1}
C        [6]     {6}

有点老了,但我是被指引到这里的。有办法把它按多个不同的列分组吗?

"column1", "column2", "column3"
"foo", "val1", 3
"foo", "val2", 0
"foo", "val2", 3
"bar", "other", 99

:

"column1", "column2", "column3"
"foo", "val1", [ 3 ]
"foo", "val2", [ 0, 3 ]
"bar", "other", [ 99 ]

是时候使用agg而不是apply了。

When

df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6], 'c': [1,2,5,5,4,6]})

如果你想让多个列堆叠到列表中,结果是pd。DataFrame

df.groupby('a')[['b', 'c']].agg(list)
# or 
df.groupby('a').agg(list)

如果你想在列表中单列,结果在ps.Series

df.groupby('a')['b'].agg(list)
#or
df.groupby('a')['b'].apply(list)

注意,结果为pd。当你只聚合单列时,DataFrame大约比ps.Series中的结果慢10倍,在多列情况下使用它。