给定一个函数,它产生的是1到5之间的随机整数,写一个函数,它产生的是1到7之间的随机整数。
当前回答
只要没有剩下7种可能性,就再画一个随机数,将可能性数乘以5。在Perl中:
$num = 0;
$possibilities = 1;
sub rand7
{
while( $possibilities < 7 )
{
$num = $num * 5 + int(rand(5));
$possibilities *= 5;
}
my $result = $num % 7;
$num = int( $num / 7 );
$possibilities /= 7;
return $result;
}
其他回答
rand7() = (rand5()+rand5()+rand5()+rand5()+rand5()+rand5()+rand5())%7+1
编辑:这并不奏效。误差约为千分之二(假设是完美的rand5)。桶得到:
value Count Error%
1 11158 -0.0035
2 11144 -0.0214
3 11144 -0.0214
4 11158 -0.0035
5 11172 +0.0144
6 11177 +0.0208
7 11172 +0.0144
通过转换到的和
n Error%
10 +/- 1e-3,
12 +/- 1e-4,
14 +/- 1e-5,
16 +/- 1e-6,
...
28 +/- 3e-11
似乎每增加2就增加一个数量级
BTW:上面的误差表不是通过采样产生的,而是通过以下递归关系产生的:
P [x,n]是给定n次调用rand5,输出=x可能发生的次数。
p[1,1] ... p[5,1] = 1
p[6,1] ... p[7,1] = 0
p[1,n] = p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1]
p[2,n] = p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1] + p[4,n-1]
p[3,n] = p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1] + p[5,n-1]
p[4,n] = p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1] + p[6,n-1]
p[5,n] = p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1] + p[7,n-1]
p[6,n] = p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1] + p[1,n-1]
p[7,n] = p[6,n-1] + p[5,n-1] + p[4,n-1] + p[3,n-1] + p[2,n-1]
这个怎么样
rand5 () % + rand5 (2) + 2 (2) % + rand5 rand5 () (2) % + rand5 % + rand5 (2) 2
不确定这是均匀分布的。有什么建议吗?
通过使用滚动总数,您可以同时
保持平均分配;而且 不需要牺牲随机序列中的任何元素。
这两个问题都是简单的rand(5)+rand(5)…类型的解决方案。下面的Python代码展示了如何实现它(其中大部分是证明发行版)。
import random
x = []
for i in range (0,7):
x.append (0)
t = 0
tt = 0
for i in range (0,700000):
########################################
##### qq.py #####
r = int (random.random () * 5)
t = (t + r) % 7
########################################
##### qq_notsogood.py #####
#r = 20
#while r > 6:
#r = int (random.random () * 5)
#r = r + int (random.random () * 5)
#t = r
########################################
x[t] = x[t] + 1
tt = tt + 1
high = x[0]
low = x[0]
for i in range (0,7):
print "%d: %7d %.5f" % (i, x[i], 100.0 * x[i] / tt)
if x[i] < low:
low = x[i]
if x[i] > high:
high = x[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / tt)
这个输出显示了结果:
pax$ python qq.py
0: 99908 14.27257
1: 100029 14.28986
2: 100327 14.33243
3: 100395 14.34214
4: 99104 14.15771
5: 99829 14.26129
6: 100408 14.34400
Variation = 1304 (0.18629%)
pax$ python qq.py
0: 99547 14.22100
1: 100229 14.31843
2: 100078 14.29686
3: 99451 14.20729
4: 100284 14.32629
5: 100038 14.29114
6: 100373 14.33900
Variation = 922 (0.13171%)
pax$ python qq.py
0: 100481 14.35443
1: 99188 14.16971
2: 100284 14.32629
3: 100222 14.31743
4: 99960 14.28000
5: 99426 14.20371
6: 100439 14.34843
Variation = 1293 (0.18471%)
一个简单的rand(5)+rand(5),忽略那些返回大于6的情况,其典型变化为18%,是上面所示方法的100倍:
pax$ python qq_notsogood.py
0: 31756 4.53657
1: 63304 9.04343
2: 95507 13.64386
3: 127825 18.26071
4: 158851 22.69300
5: 127567 18.22386
6: 95190 13.59857
Variation = 127095 (18.15643%)
pax$ python qq_notsogood.py
0: 31792 4.54171
1: 63637 9.09100
2: 95641 13.66300
3: 127627 18.23243
4: 158751 22.67871
5: 126782 18.11171
6: 95770 13.68143
Variation = 126959 (18.13700%)
pax$ python qq_notsogood.py
0: 31955 4.56500
1: 63485 9.06929
2: 94849 13.54986
3: 127737 18.24814
4: 159687 22.81243
5: 127391 18.19871
6: 94896 13.55657
Variation = 127732 (18.24743%)
并且,根据Nixuz的建议,我已经清理了脚本,所以您可以提取并使用rand7…材料:
import random
# rand5() returns 0 through 4 inclusive.
def rand5():
return int (random.random () * 5)
# rand7() generator returns 0 through 6 inclusive (using rand5()).
def rand7():
rand7ret = 0
while True:
rand7ret = (rand7ret + rand5()) % 7
yield rand7ret
# Number of test runs.
count = 700000
# Work out distribution.
distrib = [0,0,0,0,0,0,0]
rgen =rand7()
for i in range (0,count):
r = rgen.next()
distrib[r] = distrib[r] + 1
# Print distributions and calculate variation.
high = distrib[0]
low = distrib[0]
for i in range (0,7):
print "%d: %7d %.5f" % (i, distrib[i], 100.0 * distrib[i] / count)
if distrib[i] < low:
low = distrib[i]
if distrib[i] > high:
high = distrib[i]
diff = high - low
print "Variation = %d (%.5f%%)" % (diff, 100.0 * diff / count)
亚当·罗森菲尔德正确答案的前提是:
X = 5^n(在他的例子中,n=2) 操作n个rand5次调用以获得范围[1,x]内的数字y Z = ((int)(x / 7)) * 7 如果y > z,再试一次。否则返回y % 7 + 1
当n = 2时,有4种可能:y ={22,23,24,25}。如果你使用n = 6,你只有1个扔掉的东西:y ={15625}。
5^6 is 15625 7 times 2232 is 15624
你又给rand5个电话。但是,您获得一个丢弃值(或无限循环)的机会要低得多。如果有办法让y没有可能的一次性值,我还没有找到它。
为什么不除以5再乘以7,然后四舍五入呢?(当然,你必须使用浮点数no.)
它比其他解决方案更简单、更可靠(真的吗?)例如,在Python中:
def ranndomNo7():
import random
rand5 = random.randint(4) # Produces range: [0, 4]
rand7 = int(rand5 / 5 * 7) # /5, *7, +0.5 and floor()
return rand7
这不是很容易吗?