在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
加上霍布斯的精彩回答,我对Python和熊猫很陌生,所以如果我错了,请指出来。
要找出哪些行有nan:
nan_rows = df[df.isnull().any(1)]
将执行相同的操作,而不需要通过将any()的轴指定为1来检查'True'是否在行中存在。
其他回答
df.isna().any(axis=None)
从v0.23.2开始,您可以使用DataFrame。isna + DataFrame.any(axis=None),其中axis=None指定整个DataFrame的逻辑缩减。
# Setup
df = pd.DataFrame({'A': [1, 2, np.nan], 'B' : [np.nan, 4, 5]})
df
A B
0 1.0 NaN
1 2.0 4.0
2 NaN 5.0
df.isna()
A B
0 False True
1 False False
2 True False
df.isna().any(axis=None)
# True
有用的替代方案
numpy.isnan 如果您正在运行旧版本的pandas,则另一个性能选项。
np.isnan(df.values)
array([[False, True],
[False, False],
[ True, False]])
np.isnan(df.values).any()
# True
或者,检查和:
np.isnan(df.values).sum()
# 2
np.isnan(df.values).sum() > 0
# True
Series.hasnans 你也可以迭代地调用Series.hasnans。例如,要检查单个列是否有nan,
df['A'].hasnans
# True
要检查任何列是否具有nan,可以对any使用推导式(这是一种短路操作)。
any(df[c].hasnans for c in df)
# True
这实际上非常快。
df.apply(axis=0, func=lambda x : any(pd.isnull(x)))
将检查每一列是否包含Nan。
根据您正在处理的数据类型,您还可以在执行EDA时通过将dropna设置为False来获得每列的值计数。
for col in df:
print df[col].value_counts(dropna=False)
适用于分类变量,但当你有很多唯一值时就不那么适用了。
我们可以通过使用seaborn moduleheatmap生成热图来查看数据集中存在的空值
import pandas as pd
import seaborn as sns
dataset=pd.read_csv('train.csv')
sns.heatmap(dataset.isnull(),cbar=False)
由于pandas必须为DataFrame.dropna()找到这一点,我看了看他们是如何实现它的,并发现他们使用了DataFrame.count(),它会计数DataFrame中的所有非空值。参考熊猫源代码。我还没有对这种技术进行基准测试,但我认为库的作者可能已经就如何实现它做出了明智的选择。