在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
在Python Pandas中,检查DataFrame是否有一个(或多个)NaN值的最佳方法是什么?
我知道函数pd。isnan,但这将返回每个元素的布尔值的DataFrame。这篇文章也没有完全回答我的问题。
当前回答
最好的方法是:
df.isna().any().any()
原因如下。所以isna()被用来定义isnull(),但这两者当然是相同的。
这甚至比公认的答案还要快,并且涵盖了所有2D熊猫数组。
其他回答
我一直在使用以下和类型转换为字符串,并检查nan值
(str(df.at[index, 'column']) == 'nan')
这允许我检查一个系列中的特定值,而不只是返回如果它包含在系列中的某个地方。
import missingno as msno
msno.matrix(df) # just to visualize. no missing value.
Df.isnull ().any().any()应该这样做。
最好的方法是:
df.isna().any().any()
原因如下。所以isna()被用来定义isnull(),但这两者当然是相同的。
这甚至比公认的答案还要快,并且涵盖了所有2D熊猫数组。
只是用 math.isnan(x),如果x是NaN(不是数字)则返回True,否则返回False。