PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

我很惊讶没有看到重复负载检查的实际成本数字,尽管有很多很好的解释。

如果你在顶部导入,不管发生什么,你都要加载命中。这非常小,但通常是毫秒级,而不是纳秒级。

If you import within a function(s), then you only take the hit for loading if and when one of those functions is first called. As many have pointed out, if that doesn't happen at all, you save the load time. But if the function(s) get called a lot, you take a repeated though much smaller hit (for checking that it has been loaded; not for actually re-loading). On the other hand, as @aaronasterling pointed out you also save a little because importing within a function lets the function use slightly-faster local variable lookups to identify the name later (http://stackoverflow.com/questions/477096/python-import-coding-style/4789963#4789963).

下面是一个简单测试的结果,该测试从函数内部导入了一些内容。报告的时间(在2.3 GHz Intel Core i7上的Python 2.7.14中)如下所示(第2个调用比后面的调用多似乎是一致的,尽管我不知道为什么)。

 0 foo:   14429.0924 µs
 1 foo:      63.8962 µs
 2 foo:      10.0136 µs
 3 foo:       7.1526 µs
 4 foo:       7.8678 µs
 0 bar:       9.0599 µs
 1 bar:       6.9141 µs
 2 bar:       7.1526 µs
 3 bar:       7.8678 µs
 4 bar:       7.1526 µs

代码:

from __future__ import print_function
from time import time

def foo():
    import collections
    import re
    import string
    import math
    import subprocess
    return

def bar():
    import collections
    import re
    import string
    import math
    import subprocess
    return

t0 = time()
for i in xrange(5):
    foo()
    t1 = time()
    print("    %2d foo: %12.4f \xC2\xB5s" % (i, (t1-t0)*1E6))
    t0 = t1
for i in xrange(5):
    bar()
    t1 = time()
    print("    %2d bar: %12.4f \xC2\xB5s" % (i, (t1-t0)*1E6))
    t0 = t1

其他回答

模块导入非常快,但不是即时的。这意味着:

将导入放在模块的顶部是可以的,因为这是一个微不足道的成本,只需要支付一次。 将导入放在函数中会导致对该函数的调用花费更长的时间。

所以如果你关心效率,把进口放在最上面。只有在分析显示有帮助的情况下,才将它们移动到函数中(您进行了分析,以查看哪里可以最好地提高性能,对吗??)


我所见过的执行惰性导入的最佳理由是:

可选的库支持。如果您的代码有多个使用不同库的路径,如果没有安装可选库,请不要中断。 在插件的__init__.py中,该插件可能被导入,但实际上没有使用。例如Bazaar插件,它们使用bzrlib的惰性加载框架。

I do not aspire to provide complete answer, because others have already done this very well. I just want to mention one use case when I find especially useful to import modules inside functions. My application uses python packages and modules stored in certain location as plugins. During application startup, the application walks through all the modules in the location and imports them, then it looks inside the modules and if it finds some mounting points for the plugins (in my case it is a subclass of a certain base class having a unique ID) it registers them. The number of plugins is large (now dozens, but maybe hundreds in the future) and each of them is used quite rarely. Having imports of third party libraries at the top of my plugin modules was a bit penalty during application startup. Especially some thirdparty libraries are heavy to import (e.g. import of plotly even tries to connect to internet and download something which was adding about one second to startup). By optimizing imports (calling them only in the functions where they are used) in the plugins I managed to shrink the startup from 10 seconds to some 2 seconds. That is a big difference for my users.

所以我的答案是否定的,不要总是把导入放在模块的顶部。

在函数中导入变量/局部作用域可以提高性能。这取决于函数中导入对象的使用情况。如果你多次循环并访问一个模块全局对象,将它导入为本地会有帮助。

test.py

X=10
Y=11
Z=12
def add(i):
  i = i + 10

runlocal.py

from test import add, X, Y, Z

    def callme():
      x=X
      y=Y
      z=Z
      ladd=add 
      for i  in range(100000000):
        ladd(i)
        x+y+z

    callme()

run.py

from test import add, X, Y, Z

def callme():
  for i in range(100000000):
    add(i)
    X+Y+Z

callme()

在Linux上的时间显示了一个小的增益

/usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python run.py 
    0:17.80 real,   17.77 user, 0.01 sys
/tmp/test$ /usr/bin/time -f "\t%E real,\t%U user,\t%S sys" python runlocal.py 
    0:14.23 real,   14.22 user, 0.01 sys

真实的是挂钟。用户是程序中的时间。Sys是系统调用的时间。

https://docs.python.org/3.5/reference/executionmodel.html#resolution-of-names

有趣的是,到目前为止,没有一个回答提到并行处理,当序列化的函数代码被推到其他核心时,可能需要将导入放在函数中,例如在ipyparallel的情况下。

这是一个引人入胜的讨论。和许多人一样,我从未考虑过这个话题。我不得不在函数中导入,因为我想在我的一个库中使用Django ORM。在导入我的模型类之前,我不得不调用django.setup(),因为这是在文件的顶部,它被拖到完全非django库代码中,因为IoC注入器结构。

我稍微改了一下,最后把django.setup()放在了单例构造函数中,并把相关的导入放在了每个类方法的顶部。现在这运行得很好,但让我感到不安,因为导入不在顶部,而且我开始担心导入的额外时间。然后我来到这里,怀着极大的兴趣阅读了大家对此的看法。

我有很长的c++背景,现在使用Python/Cython。我对此的看法是,为什么不把导入放在函数中,除非它会导致一个概要瓶颈。这就像在你需要变量之前为它们声明空间一样。问题是我有数千行代码,所有的导入都在顶部!所以我想从现在开始,当我有时间的时候,我会在这里和那里改变奇怪的文件。