PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

虽然PEP鼓励在模块顶部导入,但在其他级别导入并不会出错。这表明进口应该在顶部,但也有例外。

在使用模块时加载模块是一种微优化。导入缓慢的代码可以在以后进行优化,如果这会产生相当大的差异的话。

不过,您可以在尽可能靠近顶部的位置引入标志,以便有条件地导入,允许用户使用配置导入所需的模块,同时仍然立即导入所有内容。

尽快导入意味着如果任何导入(或导入的导入)缺失或有语法错误,程序将失败。如果所有导入都发生在所有模块的顶部,则python分两步工作。编译。运行。

内置模块可以在任何导入它们的地方工作,因为它们设计得很好。您编写的模块应该是相同的。将导入移动到顶部或它们的第一次使用位置有助于确保没有副作用,并且代码正在注入依赖项。

无论您是否将导入放在顶部,当导入放在顶部时,代码都应该仍然可以工作。所以从立即导入开始,然后根据需要进行优化。

其他回答

下面是一个示例,其中所有导入都位于最顶部(这是我唯一一次需要这样做)。我希望能够在Un*x和Windows上终止子进程。

import os
# ...
try:
    kill = os.kill  # will raise AttributeError on Windows
    from signal import SIGTERM
    def terminate(process):
        kill(process.pid, SIGTERM)
except (AttributeError, ImportError):
    try:
        from win32api import TerminateProcess  # use win32api if available
        def terminate(process):
            TerminateProcess(int(process._handle), -1)
    except ImportError:
        def terminate(process):
            raise NotImplementedError  # define a dummy function

(回顾:约翰·米利金所说。)

Putting the import statement inside of a function can prevent circular dependencies. For example, if you have 2 modules, X.py and Y.py, and they both need to import each other, this will cause a circular dependency when you import one of the modules causing an infinite loop. If you move the import statement in one of the modules then it won't try to import the other module till the function is called, and that module will already be imported, so no infinite loop. Read here for more - effbot.org/zone/import-confusion.htm

模块导入非常快,但不是即时的。这意味着:

将导入放在模块的顶部是可以的,因为这是一个微不足道的成本,只需要支付一次。 将导入放在函数中会导致对该函数的调用花费更长的时间。

所以如果你关心效率,把进口放在最上面。只有在分析显示有帮助的情况下,才将它们移动到函数中(您进行了分析,以查看哪里可以最好地提高性能,对吗??)


我所见过的执行惰性导入的最佳理由是:

可选的库支持。如果您的代码有多个使用不同库的路径,如果没有安装可选库,请不要中断。 在插件的__init__.py中,该插件可能被导入,但实际上没有使用。例如Bazaar插件,它们使用bzrlib的惰性加载框架。

I do not aspire to provide complete answer, because others have already done this very well. I just want to mention one use case when I find especially useful to import modules inside functions. My application uses python packages and modules stored in certain location as plugins. During application startup, the application walks through all the modules in the location and imports them, then it looks inside the modules and if it finds some mounting points for the plugins (in my case it is a subclass of a certain base class having a unique ID) it registers them. The number of plugins is large (now dozens, but maybe hundreds in the future) and each of them is used quite rarely. Having imports of third party libraries at the top of my plugin modules was a bit penalty during application startup. Especially some thirdparty libraries are heavy to import (e.g. import of plotly even tries to connect to internet and download something which was adding about one second to startup). By optimizing imports (calling them only in the functions where they are used) in the plugins I managed to shrink the startup from 10 seconds to some 2 seconds. That is a big difference for my users.

所以我的答案是否定的,不要总是把导入放在模块的顶部。

我很惊讶没有看到重复负载检查的实际成本数字,尽管有很多很好的解释。

如果你在顶部导入,不管发生什么,你都要加载命中。这非常小,但通常是毫秒级,而不是纳秒级。

If you import within a function(s), then you only take the hit for loading if and when one of those functions is first called. As many have pointed out, if that doesn't happen at all, you save the load time. But if the function(s) get called a lot, you take a repeated though much smaller hit (for checking that it has been loaded; not for actually re-loading). On the other hand, as @aaronasterling pointed out you also save a little because importing within a function lets the function use slightly-faster local variable lookups to identify the name later (http://stackoverflow.com/questions/477096/python-import-coding-style/4789963#4789963).

下面是一个简单测试的结果,该测试从函数内部导入了一些内容。报告的时间(在2.3 GHz Intel Core i7上的Python 2.7.14中)如下所示(第2个调用比后面的调用多似乎是一致的,尽管我不知道为什么)。

 0 foo:   14429.0924 µs
 1 foo:      63.8962 µs
 2 foo:      10.0136 µs
 3 foo:       7.1526 µs
 4 foo:       7.8678 µs
 0 bar:       9.0599 µs
 1 bar:       6.9141 µs
 2 bar:       7.1526 µs
 3 bar:       7.8678 µs
 4 bar:       7.1526 µs

代码:

from __future__ import print_function
from time import time

def foo():
    import collections
    import re
    import string
    import math
    import subprocess
    return

def bar():
    import collections
    import re
    import string
    import math
    import subprocess
    return

t0 = time()
for i in xrange(5):
    foo()
    t1 = time()
    print("    %2d foo: %12.4f \xC2\xB5s" % (i, (t1-t0)*1E6))
    t0 = t1
for i in xrange(5):
    bar()
    t1 = time()
    print("    %2d bar: %12.4f \xC2\xB5s" % (i, (t1-t0)*1E6))
    t0 = t1