PEP 8规定:

导入总是放在文件的顶部,就在任何模块注释和文档字符串之后,在模块全局变量和常量之前。

然而,如果我导入的类/方法/函数只在很少的情况下使用,那么在需要时进行导入肯定会更有效吗?

这不是:

class SomeClass(object):

    def not_often_called(self)
        from datetime import datetime
        self.datetime = datetime.now()

比这更有效率?

from datetime import datetime

class SomeClass(object):

    def not_often_called(self)
        self.datetime = datetime.now()

当前回答

Module initialization only occurs once - on the first import. If the module in question is from the standard library, then you will likely import it from other modules in your program as well. For a module as prevalent as datetime, it is also likely a dependency for a slew of other standard libraries. The import statement would cost very little then since the module intialization would have happened already. All it is doing at this point is binding the existing module object to the local scope.

将这些信息与可读性参数结合起来,我会说import语句最好在模块范围内。

其他回答

我很惊讶没有看到重复负载检查的实际成本数字,尽管有很多很好的解释。

如果你在顶部导入,不管发生什么,你都要加载命中。这非常小,但通常是毫秒级,而不是纳秒级。

If you import within a function(s), then you only take the hit for loading if and when one of those functions is first called. As many have pointed out, if that doesn't happen at all, you save the load time. But if the function(s) get called a lot, you take a repeated though much smaller hit (for checking that it has been loaded; not for actually re-loading). On the other hand, as @aaronasterling pointed out you also save a little because importing within a function lets the function use slightly-faster local variable lookups to identify the name later (http://stackoverflow.com/questions/477096/python-import-coding-style/4789963#4789963).

下面是一个简单测试的结果,该测试从函数内部导入了一些内容。报告的时间(在2.3 GHz Intel Core i7上的Python 2.7.14中)如下所示(第2个调用比后面的调用多似乎是一致的,尽管我不知道为什么)。

 0 foo:   14429.0924 µs
 1 foo:      63.8962 µs
 2 foo:      10.0136 µs
 3 foo:       7.1526 µs
 4 foo:       7.8678 µs
 0 bar:       9.0599 µs
 1 bar:       6.9141 µs
 2 bar:       7.1526 µs
 3 bar:       7.8678 µs
 4 bar:       7.1526 µs

代码:

from __future__ import print_function
from time import time

def foo():
    import collections
    import re
    import string
    import math
    import subprocess
    return

def bar():
    import collections
    import re
    import string
    import math
    import subprocess
    return

t0 = time()
for i in xrange(5):
    foo()
    t1 = time()
    print("    %2d foo: %12.4f \xC2\xB5s" % (i, (t1-t0)*1E6))
    t0 = t1
for i in xrange(5):
    bar()
    t1 = time()
    print("    %2d bar: %12.4f \xC2\xB5s" % (i, (t1-t0)*1E6))
    t0 = t1

I do not aspire to provide complete answer, because others have already done this very well. I just want to mention one use case when I find especially useful to import modules inside functions. My application uses python packages and modules stored in certain location as plugins. During application startup, the application walks through all the modules in the location and imports them, then it looks inside the modules and if it finds some mounting points for the plugins (in my case it is a subclass of a certain base class having a unique ID) it registers them. The number of plugins is large (now dozens, but maybe hundreds in the future) and each of them is used quite rarely. Having imports of third party libraries at the top of my plugin modules was a bit penalty during application startup. Especially some thirdparty libraries are heavy to import (e.g. import of plotly even tries to connect to internet and download something which was adding about one second to startup). By optimizing imports (calling them only in the functions where they are used) in the plugins I managed to shrink the startup from 10 seconds to some 2 seconds. That is a big difference for my users.

所以我的答案是否定的,不要总是把导入放在模块的顶部。

除了已经给出的优秀答案之外,值得注意的是导入的位置不仅仅是风格的问题。有时,模块具有需要首先导入或初始化的隐式依赖项,而顶层导入可能会导致违反所需的执行顺序。

这个问题经常出现在Apache Spark的Python API中,在导入任何pyspark包或模块之前,你需要初始化SparkContext。最好将pyspark导入放在保证SparkContext可用的范围内。

我不太担心预先加载模块的效率。模块占用的内存不会很大(假设它足够模块化),启动成本可以忽略不计。

在大多数情况下,您希望在源文件的顶部加载模块。对于阅读代码的人来说,它可以更容易地区分哪个函数或对象来自哪个模块。

在代码的其他地方导入模块的一个很好的理由是,如果它在调试语句中使用。

例如:

do_something_with_x(x)

我可以用:

from pprint import pprint
pprint(x)
do_something_with_x(x)

当然,在代码的其他地方导入模块的另一个原因是,如果您需要动态导入它们。这是因为你几乎没有任何选择。

我不太担心预先加载模块的效率。模块占用的内存不会很大(假设它足够模块化),启动成本可以忽略不计。

有趣的是,到目前为止,没有一个回答提到并行处理,当序列化的函数代码被推到其他核心时,可能需要将导入放在函数中,例如在ipyparallel的情况下。