当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?


当前回答

这是《计算机程序的结构和解释》中关于尾部递归的摘录。

在对比迭代和递归时,我们必须小心不要将递归过程的概念与递归过程。当我们将过程描述为递归时指过程定义所指的句法事实(直接或间接)到程序本身。但当我们将过程描述为遵循一种模式,即线性递归,我们谈论的是过程如何演变,而不是如何编写过程的语法。这似乎令人不安我们将递归过程(如事实iter)称为生成迭代过程。然而,这个过程实际上是迭代的:它的状态被其三个状态变量完全捕获解释器只需要跟踪三个变量执行该过程。过程和程序之间的区别可能是令人困惑的是,大多数通用语言的实现(包括Ada、Pascal和C) 以这样一种方式设计过程消耗的内存量会随着过程调用,迭代。因此,这些语言可以描述迭代仅通过使用专用的“循环构造”来处理例如do、repeat、until、for和while。实施方案不具有此缺陷。它将在恒定空间中执行迭代过程,即使迭代过程由递归过程描述。一具有此属性的实现称为尾部递归。用一个尾部递归实现,可以使用普通过程调用机制,使特殊迭代构造只作为句法糖有用。

其他回答

与普通递归相比,尾部递归非常快。它很快,因为祖先调用的输出不会写入堆栈以保持跟踪。但在正常递归中,所有祖先调用堆栈中的输出以保持跟踪。

尾部递归函数是一个递归函数,它在返回之前执行的最后一个操作是调用递归函数。也就是说,递归函数调用的返回值将立即返回。例如,您的代码如下所示:

def recursiveFunction(some_params):
    # some code here
    return recursiveFunction(some_args)
    # no code after the return statement

实现尾部调用优化或尾部调用消除的编译器和解释器可以优化递归代码以防止堆栈溢出。如果您的编译器或解释器没有实现尾部调用优化(例如CPython解释器),那么用这种方式编写代码不会有额外的好处。

例如,这是Python中的标准递归阶乘函数:

def factorial(number):
    if number == 1:
        # BASE CASE
        return 1
    else:
        # RECURSIVE CASE
        # Note that `number *` happens *after* the recursive call.
        # This means that this is *not* tail call recursion.
        return number * factorial(number - 1)

这是阶乘函数的尾调用递归版本:

def factorial(number, accumulator=1):
    if number == 0:
        # BASE CASE
        return accumulator
    else:
        # RECURSIVE CASE
        # There's no code after the recursive call.
        # This is tail call recursion:
        return factorial(number - 1, number * accumulator)
print(factorial(5))

(请注意,即使这是Python代码,CPython解释器也不会进行尾部调用优化,因此这样安排代码不会带来运行时的好处。)

您可能需要使代码更不可读,才能利用尾部调用优化,如阶乘示例所示。(例如,基本情况现在有点不直观,累加器参数被有效地用作一种全局变量。)

但尾部调用优化的好处是它可以防止堆栈溢出错误。(我会注意到,通过使用迭代算法而不是递归算法,您可以获得同样的好处。)

当调用堆栈推送了太多帧对象时,会导致堆栈溢出。当调用函数时,框架对象被推到调用堆栈上,当函数返回时,框架将从调用堆栈中弹出。框架对象包含诸如局部变量以及函数返回时要返回的代码行之类的信息。

如果递归函数进行了太多递归调用而没有返回,则调用堆栈可能会超出其帧对象限制。(数量因平台而异;在Python中默认为1000个帧对象。)这会导致堆栈溢出错误。(嘿,这就是这个网站的名字来源!)

但是,如果递归函数做的最后一件事是进行递归调用并返回其返回值,那么它就没有理由保持当前帧对象需要停留在调用堆栈上。毕竟,如果递归函数调用后没有代码,就没有理由挂起当前帧对象的局部变量。因此,我们可以立即删除当前帧对象,而不是将其保留在调用堆栈中。这样做的最终结果是,调用堆栈的大小不会增加,因此不会出现堆栈溢出。

编译器或解释器必须具有尾部调用优化功能,以便能够识别何时可以应用尾部调用优化。即使如此,您可能已经重新排列了递归函数中的代码,以利用尾部调用优化,这取决于您是否值得优化可读性的潜在降低。

为了理解尾部调用递归和非尾部调用递归之间的一些核心区别,我们可以探索这些技术的.NET实现。

这是一篇包含C#、F#和C++\CLI中的一些示例的文章:C#、F#和C++/CLI中的尾部递归冒险。

C#没有针对尾部调用递归进行优化,而F#进行了优化。

原理的差异涉及循环与Lambda演算。C#的设计考虑到了循环,而F#是基于Lambda演算的原理构建的。有关Lambda微积分原理的一本非常好(免费)的书,请参阅Abelson、Sussman和Sussman的《计算机程序的结构和解释》。

关于F#中的尾部调用,有关非常好的介绍性文章,请参阅F#中尾部调用的详细介绍。最后,这里有一篇文章介绍了非尾部递归和尾部调用递归(在F#中)之间的区别:尾部递归与F sharp中的非尾部递归。

如果您想了解C#和F#之间尾部调用递归的一些设计差异,请参阅在C#和F#中生成尾部调用操作码。

如果您非常想知道哪些条件阻止C#编译器执行尾部调用优化,请参阅本文:JIT CLR尾部调用条件。

递归有两种基本类型:头部递归和尾部递归。

在头部递归中,函数进行递归调用,然后执行更多计算,可能使用例如递归调用。在尾部递归函数中,所有计算首先发生递归调用是最后发生的事情。

摘自这篇超棒的帖子。请考虑阅读它。

重要的一点是尾部递归本质上等同于循环。这不仅仅是一个编译器优化的问题,而是一个关于表现力的基本事实。这是双向的:你可以采取任何形式的循环

while(E) { S }; return Q

其中E和Q是表达式,S是语句序列,并将其转换为尾部递归函数

f() = if E then { S; return f() } else { return Q }

当然,必须定义E、S和Q来计算一些变量的有趣值。例如,循环函数

sum(n) {
  int i = 1, k = 0;
  while( i <= n ) {
    k += i;
    ++i;
  }
  return k;
}

等效于尾部递归函数

sum_aux(n,i,k) {
  if( i <= n ) {
    return sum_aux(n,i+1,k+i);
  } else {
    return k;
  }
}

sum(n) {
  return sum_aux(n,1,0);
}

(用参数较少的函数“包装”尾部递归函数是一种常见的函数习惯用法。)