当我开始学习口齿不清时,我遇到了“尾部递归”这个词。这到底是什么意思?


当前回答

这是《计算机程序的结构和解释》中关于尾部递归的摘录。

在对比迭代和递归时,我们必须小心不要将递归过程的概念与递归过程。当我们将过程描述为递归时指过程定义所指的句法事实(直接或间接)到程序本身。但当我们将过程描述为遵循一种模式,即线性递归,我们谈论的是过程如何演变,而不是如何编写过程的语法。这似乎令人不安我们将递归过程(如事实iter)称为生成迭代过程。然而,这个过程实际上是迭代的:它的状态被其三个状态变量完全捕获解释器只需要跟踪三个变量执行该过程。过程和程序之间的区别可能是令人困惑的是,大多数通用语言的实现(包括Ada、Pascal和C) 以这样一种方式设计过程消耗的内存量会随着过程调用,迭代。因此,这些语言可以描述迭代仅通过使用专用的“循环构造”来处理例如do、repeat、until、for和while。实施方案不具有此缺陷。它将在恒定空间中执行迭代过程,即使迭代过程由递归过程描述。一具有此属性的实现称为尾部递归。用一个尾部递归实现,可以使用普通过程调用机制,使特殊迭代构造只作为句法糖有用。

其他回答

下面是比较两个函数的快速代码片段。第一种是传统的递归,用于求给定数的阶乘。第二种使用尾部递归。

理解起来非常简单直观。

判断递归函数是否为尾部递归函数的一种简单方法是,它是否在基本情况下返回具体值。这意味着它不会返回1或true或类似的值。它很可能会返回某个方法参数的变体。

另一种方法是判断递归调用是否没有任何加法、算术、修改等。这意味着它只是一个纯递归调用。

public static int factorial(int mynumber) {
    if (mynumber == 1) {
        return 1;
    } else {            
        return mynumber * factorial(--mynumber);
    }
}

public static int tail_factorial(int mynumber, int sofar) {
    if (mynumber == 1) {
        return sofar;
    } else {
        return tail_factorial(--mynumber, sofar * mynumber);
    }
}

使用常规递归,每个递归调用将另一个条目推送到调用堆栈中。递归完成后,应用程序必须将每个条目向下弹出。

使用尾部递归,根据语言的不同,编译器可以将堆栈折叠为一个条目,这样可以节省堆栈空间。。。大型递归查询实际上会导致堆栈溢出。

基本上,尾部递归可以优化到迭代中。

尾部递归是函数调用的递归函数自身位于函数的末尾(“尾部”),其中没有计算在递归调用返回后完成。许多编译器优化以将递归调用更改为尾部递归调用或迭代调用。

考虑计算一个数的阶乘的问题。

一种简单的方法是:

  factorial(n):

    if n==0 then 1

    else n*factorial(n-1)

假设你调用阶乘(4)。递归树为:

       factorial(4)
       /        \
      4      factorial(3)
     /             \
    3          factorial(2)
   /                  \
  2                factorial(1)
 /                       \
1                       factorial(0)
                            \
                             1    

上述情况下的最大递归深度为O(n)。

但是,请考虑以下示例:

factAux(m,n):
if n==0  then m;
else     factAux(m*n,n-1);

factTail(n):
   return factAux(1,n);

factTail(4)的递归树为:

factTail(4)
   |
factAux(1,4)
   |
factAux(4,3)
   |
factAux(12,2)
   |
factAux(24,1)
   |
factAux(24,0)
   |
  24

这里,最大递归深度是O(n),但没有一个调用向堆栈添加任何额外变量。因此编译器可以取消堆栈。

这个问题有很多很好的答案。。。但我忍不住提出了另一种看法,即如何定义“尾部递归”,或者至少是“正确的尾部递归”。即:是否应该将其视为程序中特定表达式的属性?还是应该将其视为编程语言实现的属性?

关于后一种观点,Will Clinger的一篇经典论文“正确的尾部递归和空间效率”(PLDI 1998)将“正确的尾递归”定义为编程语言实现的属性。该定义被构造为允许忽略实现细节(例如调用堆栈实际上是通过运行时堆栈还是通过堆分配的帧链接列表表示的)。

为了实现这一点,它使用了渐近分析:不是人们通常看到的程序执行时间,而是程序空间使用情况。这样,堆分配的链接列表与运行时调用堆栈的空间使用最终是渐近等价的;因此,人们会忽略编程语言实现的细节(这一细节在实践中当然非常重要,但当试图确定给定的实现是否满足“属性尾部递归”的要求时,可能会让事情变得一团糟)

该论文值得仔细研究,原因如下:

它给出了程序尾部表达式和尾部调用的归纳定义。(这样的定义,以及为什么这样的电话很重要,似乎是这里给出的大多数其他答案的主题。)以下是这些定义,只是为了提供文本的味道:定义1以核心方案编写的程序的尾部表达式归纳如下。lambda表达式的主体是尾部表达式如果(如果E0 E1 E2)是尾部表达式,则E1和E2都是尾部表达式。其他的都不是尾部表达式。定义2尾部调用是作为过程调用的尾部表达式。

(尾部递归调用,或者正如论文所说,“self-tail调用”是尾部调用的一种特殊情况,其中过程本身被调用。)

它为评估核心方案的六个不同“机器”提供了正式定义,其中每个机器都具有相同的可观察行为,除了每个机器所处的渐近空间复杂性类。例如,在为分别为1。基于堆栈的内存管理,2。垃圾收集,但没有尾部调用。垃圾收集和尾部调用,本文继续介绍更高级的存储管理策略,如4。“evlis尾部递归”,在尾部调用的最后一个子表达式参数求值期间不需要保存环境,5。将闭包的环境减少到该闭包的自由变量,以及6。Appel和Shao定义的所谓“空间安全”语义。为了证明这些机器实际上属于六个不同的空间复杂性类,本文针对每对被比较的机器,提供了程序的具体示例,这些程序将揭示一台机器上的渐近空间爆炸,而不是另一台机器。


(现在仔细阅读我的答案,我不确定我是否真的抓住了克林格论文的关键点。但是,唉,我现在不能花更多的时间来研究这个答案。)

对我来说,理解尾调用递归的最好方法是递归的一种特殊情况,其中最后一个调用(或尾调用)是函数本身。

比较Python中提供的示例:

def recsum(x):
 if x == 1:
  return x
 else:
  return x + recsum(x - 1)

^递归

def tailrecsum(x, running_total=0):
  if x == 0:
    return running_total
  else:
    return tailrecsum(x - 1, running_total + x)

^尾部递归

正如您在常规递归版本中看到的,代码块中的最后一个调用是x+recsum(x-1)。所以在调用recsum方法之后,还有一个操作是x+。。。

然而,在尾部递归版本中,代码块中的最后一个调用(或尾部调用)是tailrecsum(x-1,running_total+x),这意味着最后一次调用是对方法本身进行的,之后不再进行操作。

这一点很重要,因为这里看到的尾部递归不会使内存增长,因为当底层VM看到一个函数在尾部位置(函数中要计算的最后一个表达式)调用自己时,它会消除当前堆栈帧,这就是所谓的尾部调用优化(TCO)。

EDIT

没有。请记住,上面的示例是用Python编写的,其运行时不支持TCO。这只是一个解释这一点的例子。在Scheme、Haskell等语言中支持TCO