我有一个带有两个y轴的图,使用twinx()。我也给了线条标签,并想用legend()显示它们,但我只成功地获得了图例中一个轴的标签:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(time, Swdown, '-', label = 'Swdown')
ax.plot(time, Rn, '-', label = 'Rn')
ax2 = ax.twinx()
ax2.plot(time, temp, '-r', label = 'temp')
ax.legend(loc=0)
ax.grid()
ax.set_xlabel("Time (h)")
ax.set_ylabel(r"Radiation ($MJ\,m^{-2}\,d^{-1}$)")
ax2.set_ylabel(r"Temperature ($^\circ$C)")
ax2.set_ylim(0, 35)
ax.set_ylim(-20,100)
plt.show()

所以我只得到图例中第一个轴的标签,而不是第二个轴的标签“temp”。如何将第三个标签添加到图例中?


当前回答

我不确定这个功能是否是新的,但你也可以使用get_legend_handles_labels()方法,而不是自己跟踪行和标签:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib import rc
rc('mathtext', default='regular')

pi = np.pi

# fake data
time = np.linspace (0, 25, 50)
temp = 50 / np.sqrt (2 * pi * 3**2) \
        * np.exp (-((time - 13)**2 / (3**2))**2) + 15
Swdown = 400 / np.sqrt (2 * pi * 3**2) * np.exp (-((time - 13)**2 / (3**2))**2)
Rn = Swdown - 10

fig = plt.figure()
ax = fig.add_subplot(111)

ax.plot(time, Swdown, '-', label = 'Swdown')
ax.plot(time, Rn, '-', label = 'Rn')
ax2 = ax.twinx()
ax2.plot(time, temp, '-r', label = 'temp')

# ask matplotlib for the plotted objects and their labels
lines, labels = ax.get_legend_handles_labels()
lines2, labels2 = ax2.get_legend_handles_labels()
ax2.legend(lines + lines2, labels + labels2, loc=0)

ax.grid()
ax.set_xlabel("Time (h)")
ax.set_ylabel(r"Radiation ($MJ\,m^{-2}\,d^{-1}$)")
ax2.set_ylabel(r"Temperature ($^\circ$C)")
ax2.set_ylim(0, 35)
ax.set_ylim(-20,100)
plt.show()

其他回答

一个快速的hack,可能适合你的需要..

取下盒子的框架,手动将两个图例放在彼此旁边。就像这样…

ax1.legend(loc = (.75,.1), frameon = False)
ax2.legend( loc = (.75, .05), frameon = False)

其中loc元组是从左到右和从下到上的百分比,表示图表中的位置。

从matplotlib 2.1版本开始,您可以使用图形图例。我们可以创建一个图形图例,而不是ax.legend(),它使用斧头ax的句柄生成一个图例

fig.legend(loc="upper right")

它将收集图中所有子图的所有句柄。因为它是一个图形图例,所以它将被放置在图形的角落,loc参数是相对于图形的。

import numpy as np
import matplotlib.pyplot as plt

x = np.linspace(0,10)
y = np.linspace(0,10)
z = np.sin(x/3)**2*98

fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x,y, '-', label = 'Quantity 1')

ax2 = ax.twinx()
ax2.plot(x,z, '-r', label = 'Quantity 2')
fig.legend(loc="upper right")

ax.set_xlabel("x [units]")
ax.set_ylabel(r"Quantity 1")
ax2.set_ylabel(r"Quantity 2")

plt.show()

为了将图例放回坐标轴,需要提供bbox_to_anchor和bbox_transform。后者将是图例应驻留的轴的轴变换。前者可以是坐标轴坐标中给定的由loc定义的边的坐标。

fig.legend(loc="upper right", bbox_to_anchor=(1,1), bbox_transform=ax.transAxes)

我发现下面的官方matplotlib示例使用host_subplot在一个图例中显示多个y轴和所有不同的标签。没有必要变通。目前为止我找到的最好的解决办法。 http://matplotlib.org/examples/axes_grid/demo_parasite_axes2.html

from mpl_toolkits.axes_grid1 import host_subplot
import mpl_toolkits.axisartist as AA
import matplotlib.pyplot as plt

host = host_subplot(111, axes_class=AA.Axes)
plt.subplots_adjust(right=0.75)

par1 = host.twinx()
par2 = host.twinx()

offset = 60
new_fixed_axis = par2.get_grid_helper().new_fixed_axis
par2.axis["right"] = new_fixed_axis(loc="right",
                                    axes=par2,
                                    offset=(offset, 0))

par2.axis["right"].toggle(all=True)

host.set_xlim(0, 2)
host.set_ylim(0, 2)

host.set_xlabel("Distance")
host.set_ylabel("Density")
par1.set_ylabel("Temperature")
par2.set_ylabel("Velocity")

p1, = host.plot([0, 1, 2], [0, 1, 2], label="Density")
p2, = par1.plot([0, 1, 2], [0, 3, 2], label="Temperature")
p3, = par2.plot([0, 1, 2], [50, 30, 15], label="Velocity")

par1.set_ylim(0, 4)
par2.set_ylim(1, 65)

host.legend()

plt.draw()
plt.show()

如果您正在使用Seaborn,您可以这样做:

g = sns.barplot('arguments blah blah')
g2 = sns.lineplot('arguments blah blah')
h1,l1 = g.get_legend_handles_labels()
h2,l2 = g2.get_legend_handles_labels()
#Merging two legends
g.legend(h1+h2, l1+l2, title_fontsize='10')
#removes the second legend
g2.get_legend().remove()

准备

import numpy as np
from matplotlib import pyplot as plt

fig, ax1 = plt.subplots( figsize=(15,6) )

Y1, Y2 = np.random.random((2,100))

ax2 = ax1.twinx()

内容

我很惊讶它没有显示到目前为止,但最简单的方法是手动收集它们到一个轴objs(躺在彼此的顶部)

l1 = ax1.plot( range(len(Y1)), Y1, label='Label 1' )
l2 = ax2.plot( range(len(Y2)), Y2, label='Label 2', color='orange' )

ax1.legend( handles=l1+l2 )

或者通过fig.legend()将它们自动收集到周围的图形中,并摆弄bbox_to_anchor参数:

ax1.plot( range(len(Y1)), Y1, label='Label 1' )
ax2.plot( range(len(Y2)), Y2, label='Label 2', color='orange' )

fig.legend( bbox_to_anchor=(.97, .97) )

终结

fig.tight_layout()
fig.savefig('stackoverflow.png', bbox_inches='tight')