我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。


当前回答

c++中最简单的LIS解决方案,具有O(nlog(n))时间复杂度

#include <iostream>
#include "vector"
using namespace std;

// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
    if(beg<=end)
    {
        int mid = (beg+end)/2;
        if(a[mid] == value)
            return mid;
        else if(value < a[mid])
            return ceilBinarySearch(a,beg,mid-1,value);
        else
            return ceilBinarySearch(a,mid+1,end,value);

    return 0;
    }

    return beg;

}
int lis(vector<int> arr)
{
    vector<int> dp(arr.size(),0);
    int len = 0;
    for(int i = 0;i<arr.size();i++)
    {
        int j = ceilBinarySearch(dp,0,len-1,arr[i]);
        dp[j] = arr[i];
        if(j == len)
            len++;

    }
    return len;
}

int main()
{
    vector<int> arr  {2, 5,-1,0,6,1,2};
    cout<<lis(arr);
    return 0;
}

输出: 4

其他回答

这是一个O(n²)的Java实现。我只是没有使用二分搜索来找到S中最小的元素,它是>= than x,我只是使用了一个for循环。使用二分搜索将使复杂度为O(n logn)

public static void olis(int[] seq){

    int[] memo = new int[seq.length];

    memo[0] = seq[0];
    int pos = 0;

    for (int i=1; i<seq.length; i++){

        int x = seq[i];

            if (memo[pos] < x){ 
                pos++;
                memo[pos] = x;
            } else {

                for(int j=0; j<=pos; j++){
                    if (memo[j] >= x){
                        memo[j] = x;
                        break;
                    }
                }
            }
            //just to print every step
            System.out.println(Arrays.toString(memo));
    }

    //the final array with the LIS
    System.out.println(Arrays.toString(memo));
    System.out.println("The length of lis is " + (pos + 1));

}

用Java签出包含数组元素的最长递增子序列的代码

http://ideone.com/Nd2eba

/**
 **    Java Program to implement Longest Increasing Subsequence Algorithm
 **/

import java.util.Scanner;

/** Class  LongestIncreasingSubsequence **/
 class  LongestIncreasingSubsequence
{
    /** function lis **/
    public int[] lis(int[] X)
    {        
        int n = X.length - 1;
        int[] M = new int[n + 1];  
        int[] P = new int[n + 1]; 
        int L = 0;

        for (int i = 1; i < n + 1; i++)
        {
            int j = 0;

            /** Linear search applied here. Binary Search can be applied too.
                binary search for the largest positive j <= L such that 
                X[M[j]] < X[i] (or set j = 0 if no such value exists) **/

            for (int pos = L ; pos >= 1; pos--)
            {
                if (X[M[pos]] < X[i])
                {
                    j = pos;
                    break;
                }
            }            
            P[i] = M[j];
            if (j == L || X[i] < X[M[j + 1]])
            {
                M[j + 1] = i;
                L = Math.max(L,j + 1);
            }
        }

        /** backtrack **/

        int[] result = new int[L];
        int pos = M[L];
        for (int i = L - 1; i >= 0; i--)
        {
            result[i] = X[pos];
            pos = P[pos];
        }
        return result;             
    }

    /** Main Function **/
    public static void main(String[] args) 
    {    
        Scanner scan = new Scanner(System.in);
        System.out.println("Longest Increasing Subsequence Algorithm Test\n");

        System.out.println("Enter number of elements");
        int n = scan.nextInt();
        int[] arr = new int[n + 1];
        System.out.println("\nEnter "+ n +" elements");
        for (int i = 1; i <= n; i++)
            arr[i] = scan.nextInt();

        LongestIncreasingSubsequence obj = new LongestIncreasingSubsequence(); 
        int[] result = obj.lis(arr);       

        /** print result **/ 

        System.out.print("\nLongest Increasing Subsequence : ");
        for (int i = 0; i < result.length; i++)
            System.out.print(result[i] +" ");
        System.out.println();
    }
}

好的,我先描述最简单的解也就是O(N²)N是集合的大小。还有一个O(N log N)解,我也会讲到。在高效算法一节中可以找到。

我假设数组的下标从0到N - 1。因此,让我们定义DP[i]为LIS(最长递增子序列)的长度,它结束于索引为i的元素。为了计算DP[i],我们查看所有索引j < i,并检查DP[j] + 1 > DP[i]和array[j] < array[i](我们希望它是递增的)。如果这是真的,我们可以更新DP[i]的当前最优值。要找到数组的全局最优值,您可以从DP[0…]N - 1]。

int maxLength = 1, bestEnd = 0;
DP[0] = 1;
prev[0] = -1;

for (int i = 1; i < N; i++)
{
   DP[i] = 1;
   prev[i] = -1;

   for (int j = i - 1; j >= 0; j--)
      if (DP[j] + 1 > DP[i] && array[j] < array[i])
      {
         DP[i] = DP[j] + 1;
         prev[i] = j;
      }

   if (DP[i] > maxLength)
   {
      bestEnd = i;
      maxLength = DP[i];
   }
}

我使用数组prev是为了以后能够找到实际的序列,而不仅仅是它的长度。只需在循环中使用prev[bestEnd]从bestEnd递归返回。-1值是停止的标志。


好了,现在来看更有效的O(nlog N)解:

设S[pos]定义为长度为pos的递增序列结束的最小整数。现在遍历输入集的每个整数X,并执行以下操作:

如果X >是S中的最后一个元素,那么将X附加到S的末尾,这本质上意味着我们已经找到了一个新的最大的LIS。 否则,找到S中最小的元素,即>= X,并将其改为X。 因为S在任何时候都是排序的,所以可以使用log(N)的二分搜索来找到元素。

总运行时间- N个整数,并对每个整数进行二进制搜索- N * log(N) = O(N log N)

现在我们来做一个真实的例子:

整数的集合: 2 6 3 4 1 2 9 5 8

步骤:

0. S = {} - Initialize S to the empty set
1. S = {2} - New largest LIS
2. S = {2, 6} - New largest LIS
3. S = {2, 3} - Changed 6 to 3
4. S = {2, 3, 4} - New largest LIS
5. S = {1, 3, 4} - Changed 2 to 1
6. S = {1, 2, 4} - Changed 3 to 2
7. S = {1, 2, 4, 9} - New largest LIS
8. S = {1, 2, 4, 5} - Changed 9 to 5
9. S = {1, 2, 4, 5, 8} - New largest LIS

所以LIS的长度是5 (S的大小)。

为了重建实际的LIS,我们将再次使用父数组。 设parent[i]是LIS中索引为i的元素的前身,该元素以索引为i的元素结束。

为了使事情更简单,我们可以在数组S中保留不是实际的整数,而是它们在集合中的下标(位置)。我们不保留{1,2,4,5,8},而是保留{4,5,3,7,8}。

即输入[4]= 1,输入[5]= 2,输入[3]= 4,输入[7]= 5,输入[8]= 8。

如果我们正确地更新父数组,实际的LIS是:

input[S[lastElementOfS]], 
input[parent[S[lastElementOfS]]],
input[parent[parent[S[lastElementOfS]]]],
........................................

现在重要的是,我们如何更新父数组?有两种选择:

如果X >是S中的最后一个元素,那么parent[indexX] = indexLastElement。这意味着最新元素的父元素是最后一个元素。我们只是在S的末尾加上X。 否则,找到S中最小元素的索引>= than X,并将其更改为X。这里parent[indexX] = S[index - 1]。

说到DP solution,我发现很奇怪的是没有人提到LIS可以简化为LCS。你所需要做的就是对原始序列的副本进行排序,删除所有重复的副本,然后对它们进行LCS。在伪代码中是:

def LIS(S):
    T = sort(S)
    T = removeDuplicates(T)
    return LCS(S, T)

以及用Go语言编写的完整实现。如果你不需要重构解,你就不需要维护整个n^2 DP矩阵。

func lcs(arr1 []int) int {
    arr2 := make([]int, len(arr1))
    for i, v := range arr1 {
        arr2[i] = v
    }
    sort.Ints(arr1)
    arr3 := []int{}
    prev := arr1[0] - 1
    for _, v := range arr1 {
        if v != prev {
            prev = v
            arr3 = append(arr3, v)
        }
    }

    n1, n2 := len(arr1), len(arr3)

    M := make([][]int, n2 + 1)
    e := make([]int, (n1 + 1) * (n2 + 1))
    for i := range M {
        M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
    }

    for i := 1; i <= n2; i++ {
        for j := 1; j <= n1; j++ {
            if arr2[j - 1] == arr3[i - 1] {
                M[i][j] = M[i - 1][j - 1] + 1
            } else if M[i - 1][j] > M[i][j - 1] {
                M[i][j] = M[i - 1][j]
            } else {
                M[i][j] = M[i][j - 1]
            }
        }
    }

    return M[n2][n1]
}

c++中最简单的LIS解决方案,具有O(nlog(n))时间复杂度

#include <iostream>
#include "vector"
using namespace std;

// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
    if(beg<=end)
    {
        int mid = (beg+end)/2;
        if(a[mid] == value)
            return mid;
        else if(value < a[mid])
            return ceilBinarySearch(a,beg,mid-1,value);
        else
            return ceilBinarySearch(a,mid+1,end,value);

    return 0;
    }

    return beg;

}
int lis(vector<int> arr)
{
    vector<int> dp(arr.size(),0);
    int len = 0;
    for(int i = 0;i<arr.size();i++)
    {
        int j = ceilBinarySearch(dp,0,len-1,arr[i]);
        dp[j] = arr[i];
        if(j == len)
            len++;

    }
    return len;
}

int main()
{
    vector<int> arr  {2, 5,-1,0,6,1,2};
    cout<<lis(arr);
    return 0;
}

输出: 4