我有一组整数。我想用动态规划的方法求出这个集合的最长递增子序列。


当前回答

下面是从动态规划的角度评估问题的三个步骤:

递归定义:maxLength(i) == 1 + maxLength(j) where 0 < j < i and array[i] > array[j] 递归参数边界:可能有0到i - 1个子序列作为参数传递 求值顺序:由于是递增子序列,所以要从0求值到n

如果我们以序列{0,8,2,3,7,9}为例,at index:

我们会得到子序列{0}作为基本情况 [1]有一个新的子序列{0,8} [2]试图评估两个新的序列{0,8,2}和{0,2}通过添加元素在索引2到现有的子序列-只有一个是有效的,所以添加第三个可能的序列{0,2}只到参数列表 ...

下面是c++ 11的工作代码:

#include <iostream>
#include <vector>

int getLongestIncSub(const std::vector<int> &sequence, size_t index, std::vector<std::vector<int>> &sub) {
    if(index == 0) {
        sub.push_back(std::vector<int>{sequence[0]});
        return 1;
    }

    size_t longestSubSeq = getLongestIncSub(sequence, index - 1, sub);
    std::vector<std::vector<int>> tmpSubSeq;
    for(std::vector<int> &subSeq : sub) {
        if(subSeq[subSeq.size() - 1] < sequence[index]) {
            std::vector<int> newSeq(subSeq);
            newSeq.push_back(sequence[index]);
            longestSubSeq = std::max(longestSubSeq, newSeq.size());
            tmpSubSeq.push_back(newSeq);
        }
    }
    std::copy(tmpSubSeq.begin(), tmpSubSeq.end(),
              std::back_insert_iterator<std::vector<std::vector<int>>>(sub));

    return longestSubSeq;
}

int getLongestIncSub(const std::vector<int> &sequence) {
    std::vector<std::vector<int>> sub;
    return getLongestIncSub(sequence, sequence.size() - 1, sub);
}

int main()
{
    std::vector<int> seq{0, 8, 2, 3, 7, 9};
    std::cout << getLongestIncSub(seq);
    return 0;
}

其他回答

这里是java O(nlogn)的实现

import java.util.Scanner;

public class LongestIncreasingSeq {


    private static int binarySearch(int table[],int a,int len){

        int end = len-1;
        int beg = 0;
        int mid = 0;
        int result = -1;
        while(beg <= end){
            mid = (end + beg) / 2;
            if(table[mid] < a){
                beg=mid+1;
                result = mid;
            }else if(table[mid] == a){
                return len-1;
            }else{
                end = mid-1;
            }
        }
        return result;
    }
    
    public static void main(String[] args) {        
        
//        int[] t = {1, 2, 5,9,16};
//        System.out.println(binarySearch(t , 9, 5));
        Scanner in = new Scanner(System.in);
        int size = in.nextInt();//4;
        
        int A[] = new int[size];
        int table[] = new int[A.length]; 
        int k = 0;
        while(k<size){
            A[k++] = in.nextInt();
            if(k<size-1)
                in.nextLine();
        }        
        table[0] = A[0];
        int len = 1; 
        for (int i = 1; i < A.length; i++) {
            if(table[0] > A[i]){
                table[0] = A[i];
            }else if(table[len-1]<A[i]){
                table[len++]=A[i];
            }else{
                table[binarySearch(table, A[i],len)+1] = A[i];
            }            
        }
        System.out.println(len);
    }    
}

//可以使用TreeSet

c++中最简单的LIS解决方案,具有O(nlog(n))时间复杂度

#include <iostream>
#include "vector"
using namespace std;

// binary search (If value not found then it will return the index where the value should be inserted)
int ceilBinarySearch(vector<int> &a,int beg,int end,int value)
{
    if(beg<=end)
    {
        int mid = (beg+end)/2;
        if(a[mid] == value)
            return mid;
        else if(value < a[mid])
            return ceilBinarySearch(a,beg,mid-1,value);
        else
            return ceilBinarySearch(a,mid+1,end,value);

    return 0;
    }

    return beg;

}
int lis(vector<int> arr)
{
    vector<int> dp(arr.size(),0);
    int len = 0;
    for(int i = 0;i<arr.size();i++)
    {
        int j = ceilBinarySearch(dp,0,len-1,arr[i]);
        dp[j] = arr[i];
        if(j == len)
            len++;

    }
    return len;
}

int main()
{
    vector<int> arr  {2, 5,-1,0,6,1,2};
    cout<<lis(arr);
    return 0;
}

输出: 4

最长递增子序列(Java)

import java.util.*;

class ChainHighestValue implements Comparable<ChainHighestValue>{
    int highestValue;
    int chainLength;
    ChainHighestValue(int highestValue,int chainLength) {
        this.highestValue = highestValue;
        this.chainLength = chainLength;
    }
    @Override
    public int compareTo(ChainHighestValue o) {
       return this.chainLength-o.chainLength;
    }

}


public class LongestIncreasingSubsequenceLinkedList {


    private static LinkedList<Integer> LongestSubsequent(int arr[], int size){
        ArrayList<LinkedList<Integer>> seqList=new ArrayList<>();
        ArrayList<ChainHighestValue> valuePairs=new ArrayList<>();
        for(int i=0;i<size;i++){
            int currValue=arr[i];
            if(valuePairs.size()==0){
                LinkedList<Integer> aList=new LinkedList<>();
                aList.add(arr[i]);
                seqList.add(aList);
                valuePairs.add(new ChainHighestValue(arr[i],1));

            }else{
                try{
                    ChainHighestValue heighestIndex=valuePairs.stream().filter(e->e.highestValue<currValue).max(ChainHighestValue::compareTo).get();
                    int index=valuePairs.indexOf(heighestIndex);
                    seqList.get(index).add(arr[i]);
                    heighestIndex.highestValue=arr[i];
                    heighestIndex.chainLength+=1;

                }catch (Exception e){
                    LinkedList<Integer> aList=new LinkedList<>();
                    aList.add(arr[i]);
                    seqList.add(aList);
                    valuePairs.add(new ChainHighestValue(arr[i],1));
                }
            }
        }
        ChainHighestValue heighestIndex=valuePairs.stream().max(ChainHighestValue::compareTo).get();
        int index=valuePairs.indexOf(heighestIndex);
        return seqList.get(index);
    }

    public static void main(String[] args){
        int arry[]={5,1,3,6,11,30,32,5,3,73,79};
        //int arryB[]={3,1,5,2,6,4,9};
        LinkedList<Integer> LIS=LongestSubsequent(arry, arry.length);
        System.out.println("Longest Incrementing Subsequence:");
        for(Integer a: LIS){
            System.out.print(a+" ");
        }

    }
}

下面的c++实现还包括一些使用名为prev的数组构建实际最长递增子序列的代码。

std::vector<int> longest_increasing_subsequence (const std::vector<int>& s)
{
    int best_end = 0;
    int sz = s.size();

    if (!sz)
        return std::vector<int>();

    std::vector<int> prev(sz,-1);
    std::vector<int> memo(sz, 0);

    int max_length = std::numeric_limits<int>::min();

    memo[0] = 1;

    for ( auto i = 1; i < sz; ++i)
    {
        for ( auto j = 0; j < i; ++j)
        {
            if ( s[j] < s[i] && memo[i] < memo[j] + 1 )
            {
                memo[i] =  memo[j] + 1;
                prev[i] =  j;
            }
        }

        if ( memo[i] > max_length ) 
        {
            best_end = i;
            max_length = memo[i];
        }
    }

    // Code that builds the longest increasing subsequence using "prev"
    std::vector<int> results;
    results.reserve(sz);

    std::stack<int> stk;
    int current = best_end;

    while (current != -1)
    {
        stk.push(s[current]);
        current = prev[current];
    }

    while (!stk.empty())
    {
        results.push_back(stk.top());
        stk.pop();
    }

    return results;
}

没有堆栈的实现只是反转向量

#include <iostream>
#include <vector>
#include <limits>
std::vector<int> LIS( const std::vector<int> &v ) {
  auto sz = v.size();
  if(!sz)
    return v;
  std::vector<int> memo(sz, 0);
  std::vector<int> prev(sz, -1);
  memo[0] = 1;
  int best_end = 0;
  int max_length = std::numeric_limits<int>::min();
  for (auto i = 1; i < sz; ++i) {
    for ( auto j = 0; j < i ; ++j) {
      if (s[j] < s[i] && memo[i] < memo[j] + 1) {
        memo[i] = memo[j] + 1;
        prev[i] = j;
      }
    }
    if(memo[i] > max_length) {
      best_end = i;
      max_length = memo[i];
    }
  }

  // create results
  std::vector<int> results;
  results.reserve(v.size());
  auto current = best_end;
  while (current != -1) {
    results.push_back(s[current]);
    current = prev[current];
  }
  std::reverse(results.begin(), results.end());
  return results;
}

说到DP solution,我发现很奇怪的是没有人提到LIS可以简化为LCS。你所需要做的就是对原始序列的副本进行排序,删除所有重复的副本,然后对它们进行LCS。在伪代码中是:

def LIS(S):
    T = sort(S)
    T = removeDuplicates(T)
    return LCS(S, T)

以及用Go语言编写的完整实现。如果你不需要重构解,你就不需要维护整个n^2 DP矩阵。

func lcs(arr1 []int) int {
    arr2 := make([]int, len(arr1))
    for i, v := range arr1 {
        arr2[i] = v
    }
    sort.Ints(arr1)
    arr3 := []int{}
    prev := arr1[0] - 1
    for _, v := range arr1 {
        if v != prev {
            prev = v
            arr3 = append(arr3, v)
        }
    }

    n1, n2 := len(arr1), len(arr3)

    M := make([][]int, n2 + 1)
    e := make([]int, (n1 + 1) * (n2 + 1))
    for i := range M {
        M[i] = e[i * (n1 + 1):(i + 1) * (n1 + 1)]
    }

    for i := 1; i <= n2; i++ {
        for j := 1; j <= n1; j++ {
            if arr2[j - 1] == arr3[i - 1] {
                M[i][j] = M[i - 1][j - 1] + 1
            } else if M[i - 1][j] > M[i][j - 1] {
                M[i][j] = M[i - 1][j]
            } else {
                M[i][j] = M[i][j - 1]
            }
        }
    }

    return M[n2][n1]
}