好吧——我几乎不好意思在这里张贴这个(如果有人投票关闭,我会删除),因为这似乎是一个基本的问题。

这是在c++中四舍五入到一个数字的倍数的正确方法吗?

我知道还有其他与此相关的问题,但我特别感兴趣的是,在c++中做这件事的最佳方法是什么:

int roundUp(int numToRound, int multiple)
{
 if(multiple == 0)
 {
  return numToRound;
 }

 int roundDown = ( (int) (numToRound) / multiple) * multiple;
 int roundUp = roundDown + multiple; 
 int roundCalc = roundUp;
 return (roundCalc);
}

更新: 抱歉,我可能没把意思说清楚。下面是一些例子:

roundUp(7, 100)
//return 100

roundUp(117, 100)
//return 200

roundUp(477, 100)
//return 500

roundUp(1077, 100)
//return 1100

roundUp(52, 20)
//return 60

roundUp(74, 30)
//return 90

当前回答

int roundUp (int numToRound, int multiple)
{
  return multiple * ((numToRound + multiple - 1) / multiple);
}

尽管:

对负数不成立 不会工作,如果numRound +多个溢出

建议使用无符号整数,这已经定义了溢出行为。

您将得到一个异常是multiple == 0,但在这种情况下,这不是一个定义良好的问题。

其他回答

int roundUp (int numToRound, int multiple)
{
  return multiple * ((numToRound + multiple - 1) / multiple);
}

尽管:

对负数不成立 不会工作,如果numRound +多个溢出

建议使用无符号整数,这已经定义了溢出行为。

您将得到一个异常是multiple == 0,但在这种情况下,这不是一个定义良好的问题。

如果x已经是一个倍数,我使用模的组合来取消余数的加法:

int round_up(int x, int div)
{
    return x + (div - x % div) % div;
}

我们求余数的倒数然后再用除数求模如果它是除数本身,再加上x。

round_up(19, 3) = 21

这是使用模板函数的现代c++方法,该模板函数适用于float, double, long, int和short(但不适用于long long和long double,因为使用了double值)。

#include <cmath>
#include <iostream>

template<typename T>
T roundMultiple( T value, T multiple )
{
    if (multiple == 0) return value;
    return static_cast<T>(std::round(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}

int main()
{
    std::cout << roundMultiple(39298.0, 100.0) << std::endl;
    std::cout << roundMultiple(20930.0f, 1000.0f) << std::endl;
    std::cout << roundMultiple(287399, 10) << std::endl;
}

但是你可以很容易地通过模板专门化添加long long和long double的支持,如下所示:

template<>
long double roundMultiple<long double>( long double value, long double multiple)
{
    if (multiple == 0.0l) return value;
    return std::round(value/multiple)*multiple;
}

template<>
long long roundMultiple<long long>( long long value, long long multiple)
{
    if (multiple == 0.0l) return value;
    return static_cast<long long>(std::round(static_cast<long double>(value)/static_cast<long double>(multiple))*static_cast<long double>(multiple));
}

要创建向上舍入的函数,请使用std::ceil,而总是向下舍入的函数请使用std::floor。上面的例子是使用std::round进行舍入。

创建“round up”或更广为人知的“round ceiling”模板函数,如下所示:

template<typename T>
T roundCeilMultiple( T value, T multiple )
{
    if (multiple == 0) return value;
    return static_cast<T>(std::ceil(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}

创建“round down”或更广为人知的“round floor”模板函数,如下所示:

template<typename T>
T roundFloorMultiple( T value, T multiple )
{
    if (multiple == 0) return value;
    return static_cast<T>(std::floor(static_cast<double>(value)/static_cast<double>(multiple))*static_cast<double>(multiple));
}

我用的是:

template <class _Ty>
inline _Ty n_Align_Up(_Ty n_x, _Ty n_alignment)
{
    assert(n_alignment > 0);
    //n_x += (n_x >= 0)? n_alignment - 1 : 1 - n_alignment; // causes to round away from zero (greatest absolute value)
    n_x += (n_x >= 0)? n_alignment - 1 : -1; // causes to round up (towards positive infinity)
    //n_x += (_Ty(-(n_x >= 0)) & n_alignment) - 1; // the same as above, avoids branch and integer multiplication
    //n_x += n_alignment - 1; // only works for positive numbers (fastest)
    return n_x - n_x % n_alignment; // rounds negative towards zero
}

对于2的幂:

template <class _Ty>
bool b_Is_POT(_Ty n_x)
{
    return !(n_x & (n_x - 1));
}

template <class _Ty>
inline _Ty n_Align_Up_POT(_Ty n_x, _Ty n_pot_alignment)
{
    assert(n_pot_alignment > 0);
    assert(b_Is_POT(n_pot_alignment)); // alignment must be power of two
    -- n_pot_alignment;
    return (n_x + n_pot_alignment) & ~n_pot_alignment; // rounds towards positive infinity (i.e. negative towards zero)
}

请注意,这两个负值都舍入到0(这意味着所有值都舍入到正无穷),它们都不依赖于有符号溢出(这在C/ c++中未定义)。

这给:

n_Align_Up(10, 100) = 100
n_Align_Up(110, 100) = 200
n_Align_Up(0, 100) = 0
n_Align_Up(-10, 100) = 0
n_Align_Up(-110, 100) = -100
n_Align_Up(-210, 100) = -200
n_Align_Up_POT(10, 128) = 128
n_Align_Up_POT(130, 128) = 256
n_Align_Up_POT(0, 128) = 0
n_Align_Up_POT(-10, 128) = 0
n_Align_Up_POT(-130, 128) = -128
n_Align_Up_POT(-260, 128) = -256
float roundUp(float number, float fixedBase) {
    if (fixedBase != 0 && number != 0) {
        float sign = number > 0 ? 1 : -1;
        number *= sign;
        number /= fixedBase;
        int fixedPoint = (int) ceil(number);
        number = fixedPoint * fixedBase;
        number *= sign;
    }
    return number;
}

这适用于任何浮点数或基数(例如,你可以四舍五入到最接近的6.75)。本质上,它是转换到定点,四舍五入,然后转换回来。它通过舍入0来处理负号。它还通过将函数转换为roundDown来处理值的负舍入。

int特定的版本如下所示:

int roundUp(int number, int fixedBase) {
    if (fixedBase != 0 && number != 0) {
        int sign = number > 0 ? 1 : -1;
        int baseSign = fixedBase > 0 ? 1 : 0;
        number *= sign;
        int fixedPoint = (number + baseSign * (fixedBase - 1)) / fixedBase;
        number = fixedPoint * fixedBase;
        number *= sign;
    }
    return number;
}

这或多或少是plinth的答案,加上负输入支持。