在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。
我们假设:
代码已经正常工作了
所选择的算法对于问题的环境已经是最优的
对代码进行了测量,并隔离了有问题的例程
所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟
我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。
理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。
我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。
不可能有这样的全面陈述,这取决于问题领域。一些可能性:
因为你没有直接指定你的应用程序是100%计算:
搜索阻塞的调用(数据库,网络硬盘,显示更新),并隔离它们和/或将它们放入线程中。
如果你使用的数据库恰好是Microsoft SQL Server:
研究nolock和rowlock指令。(在这个论坛上有一些讨论。)
如果你的应用是纯粹的计算,你可以看看我关于旋转大图像缓存优化的问题。速度的提高使我大吃一惊。
这是一个长期的尝试,但它可能提供了一个想法,特别是如果您的问题是在成像领域:代码中旋转位图
另一个是尽量避免动态内存分配。一次分配多个结构,一次释放它们。
否则,请确定最紧密的循环,并将它们与一些数据结构一起张贴在这里(无论是伪的还是非的)。
在带有模板的语言(c++ /D)中,您可以尝试通过模板参数传播常量值。你甚至可以用开关来处理小的非常值集合。
Foo(i, j); // i always in 0-4.
就变成了
switch(i)
{
case 0: Foo<0>(j); break;
case 1: Foo<1>(j); break;
case 2: Foo<2>(j); break;
case 3: Foo<3>(j); break;
case 4: Foo<4>(j); break;
}
缺点是缓存压力,因此这只会在深度或长期运行的调用树中获得,其中值在持续时间内是恒定的。
我想这已经用不同的方式说过了。但是当你在处理一个处理器密集型算法时,你应该以牺牲其他所有东西为代价来简化最内部循环中的所有东西。
That may seem obvious to some, but it's something I try to focus on regardless of the language I'm working with. If you're dealing with nested loops, for example, and you find an opportunity to take some code down a level, you can in some cases drastically speed up your code. As another example, there are the little things to think about like working with integers instead of floating point variables whenever you can, and using multiplication instead of division whenever you can. Again, these are things that should be considered for your most inner loop.
有时,您可能会发现在内循环中对整数执行数学运算的好处,然后将其缩小为随后可以使用的浮点变量。这是一个牺牲一个部分的速度来提高另一个部分的速度的例子,但在某些情况下,这样做是值得的。