在这个网站上已经有很多性能问题了,但是在我看来,几乎所有的问题都是非常具体的,而且相当狭窄。几乎所有人都重复了避免过早优化的建议。

我们假设:

代码已经正常工作了 所选择的算法对于问题的环境已经是最优的 对代码进行了测量,并隔离了有问题的例程 所有优化的尝试也将被衡量,以确保它们不会使事情变得更糟

我在这里寻找的是策略和技巧,在一个关键算法中,当没有其他事情可做,但无论如何都要挤出最后百分之几。

理想情况下,尽量让答案与语言无关,并在适用的情况下指出所建议的策略的任何缺点。

我将添加一个带有我自己最初建议的回复,并期待Stack Overflow社区能想到的任何其他东西。


当前回答

如果你有很多高度并行的浮点运算——尤其是单精度运算——尝试使用OpenCL或(对于NVidia芯片)CUDA将其卸载到图形处理器上(如果有的话)。gpu在着色器中拥有强大的浮点计算能力,这比CPU要大得多。

其他回答

您可能应该考虑“谷歌视角”,即确定您的应用程序如何在很大程度上实现并行和并发,这也不可避免地意味着在某种程度上考虑将您的应用程序分布在不同的机器和网络上,这样它就可以理想地与您投入的硬件几乎线性扩展。

另一方面,谷歌人员也以投入大量人力和资源来解决他们正在使用的项目、工具和基础设施中的一些问题而闻名,例如,通过拥有一个专门的工程师团队来破解gcc内部,以便为Google典型的用例场景做好准备,从而对gcc进行整个程序优化。

类似地,分析应用程序不再仅仅意味着分析程序代码,还包括它周围的所有系统和基础设施(想想网络、交换机、服务器、RAID阵列),以便从系统的角度识别冗余和优化潜力。

通过引用而不是通过值传递

当你不能再提高表现时,看看你是否可以提高感知的表现。

您可能无法使您的fooCalc算法更快,但通常有一些方法可以使您的应用程序对用户的响应更快。

举几个例子:

预测用户将要做什么 请求并开始着手这项工作 在那之前 将结果显示为 它们是进来的,而不是同时出现的 在最后 精确的进度计

这些不会让你的程序更快,但可能会让你的用户对你的速度更满意。

你在什么硬件上运行?您是否可以使用特定于平台化的优化(如向量化)? 你能找到更好的编译器吗?比如从GCC换成Intel? 你能让你的算法并行运行吗? 可以通过重新组织数据来减少缓存丢失吗? 可以禁用断言吗? 对编译器和平台进行微优化。在if/else语句中,把最常见的语句放在前面

最后几个%是一个非常CPU和应用程序依赖的东西....

缓存架构不同,有些芯片有片上内存 你可以直接映射,ARM的(有时)有一个矢量 单位,SH4是一个有用的矩阵操作码。有GPU吗 也许一个着色器是可行的。TMS320非常 对循环中的分支敏感(因此分离循环和 如果可能的话,将条件移到室外)。

名单在....上但这类事情真的是 最后的手段……

编译x86,并运行Valgrind/Cachegrind对代码 进行适当的性能分析。或者德州仪器的 CCStudio有一个贴心的侧写器。然后你就知道在哪里了 关注……