我如何检查一个列表是否有任何重复,并返回一个没有重复的新列表?
当前回答
如果你不关心顺序,就这样做:
def remove_duplicates(l):
return list(set(l))
一个集合保证没有重复项。
其他回答
如果你想保持顺序,不使用任何外部模块,这里有一个简单的方法:
>>> t = [1, 9, 2, 3, 4, 5, 3, 6, 7, 5, 8, 9]
>>> list(dict.fromkeys(t))
[1, 9, 2, 3, 4, 5, 6, 7, 8]
注意:这种方法保留了出现的顺序,因此,如上所示,9将在1之后,因为它是第一次出现。然而,这和你做的结果是一样的
from collections import OrderedDict
ulist=list(OrderedDict.fromkeys(l))
但它更短,跑得更快。
这是因为每次fromkeys函数尝试创建一个新键时,如果值已经存在,它就会简单地覆盖它。然而,这不会影响字典,因为fromkeys创建的字典中所有键的值都为None,因此有效地消除了所有重复的值。
可以使用Python set或dict.fromkeys()方法删除重复项。 dict.fromkeys()方法将一个列表转换为一个字典。字典不能包含重复的值,因此dict.fromkeys()将返回只有唯一值的字典。 集,像字典一样,不能包含重复的值。如果将列表转换为集合,则删除所有重复项。
方法一:幼稚法
mylist = [5, 10, 15, 20, 3, 15, 25, 20, 30, 10, 100]
uniques = []
for i in mylist:
if i not in uniques:
uniques.append(i)
print(uniques)
方法二:使用set()
mylist = [5, 10, 15, 20, 3, 15, 25, 20, 30, 10, 100]
myset = set(mylist)
print(list(myset))
与回复中列出的其他解决方案相比,下面是最快的python解决方案。
使用短路计算的实现细节允许使用列表理解,这足够快。visit .add(item)总是返回None作为结果,它被赋值为False,所以or的右边总是这样的表达式的结果。
自己计时
def deduplicate(sequence):
visited = set()
adder = visited.add # get rid of qualification overhead
out = [adder(item) or item for item in sequence if item not in visited]
return out
在这个答案中,将有两个部分:两个唯一的解,和一个特定解的速度图。
删除重复项
这些答案大多只删除可哈希的重复项,但这个问题并不意味着它不需要可哈希项,这意味着我将提供一些不需要可哈希项的解决方案。
集合。Counter是标准库中的一个功能强大的工具,可以完美地实现这一点。只有另一种解决方案里面有Counter。然而,该解决方案也仅限于可哈希键。
为了在Counter中允许不可哈希键,我创建了一个Container类,它将尝试获取对象的默认哈希函数,但如果失败,它将尝试其标识函数。它还定义了一个eq和一个散列方法。这应该足以在我们的解决方案中允许不可散列项。不可哈希对象将被视为可哈希对象。但是,这个哈希函数对不可哈希对象使用identity,这意味着两个相等的不可哈希对象将不起作用。我建议您重写它,并将其更改为使用等效可变类型的哈希(例如,如果my_list是一个列表,则使用hash(tuple(my_list))。
我也得到了两个解。另一个解决方案是保持条目的顺序,使用OrderedDict和Counter的子类,命名为'OrderedCounter'。下面是函数:
from collections import OrderedDict, Counter
class Container:
def __init__(self, obj):
self.obj = obj
def __eq__(self, obj):
return self.obj == obj
def __hash__(self):
try:
return hash(self.obj)
except:
return id(self.obj)
class OrderedCounter(Counter, OrderedDict):
'Counter that remembers the order elements are first encountered'
def __repr__(self):
return '%s(%r)' % (self.__class__.__name__, OrderedDict(self))
def __reduce__(self):
return self.__class__, (OrderedDict(self),)
def remd(sequence):
cnt = Counter()
for x in sequence:
cnt[Container(x)] += 1
return [item.obj for item in cnt]
def oremd(sequence):
cnt = OrderedCounter()
for x in sequence:
cnt[Container(x)] += 1
return [item.obj for item in cnt]
Remd为非有序排序,oremd为有序排序。你可以清楚地看出哪个更快,但我还是会解释的。非有序排序稍微快一些,因为它不存储条目的顺序。
现在,我还想展示每个答案的速度比较。我现在就做。
哪个函数是最快的?
为了去除重复,我从几个答案中收集了10个函数。我计算了每个函数的速度,并使用matplotlib.pyplot将其放入一个图形中。
我把它分成三轮画图。hashable是任何可以哈希的对象,unhashable是任何不能哈希的对象。有序序列是保持有序的序列,无序序列不保持有序。现在,这里有更多的术语:
Unordered Hashable适用于任何删除重复项的方法,它不一定要保持顺序。它不需要为不可hashables工作,但它可以。
Ordered Hashable适用于任何保持列表中元素顺序的方法,但它不一定适用于unhashables,但它可以。
Ordered Unhashable是任何保持列表中项目顺序的方法,适用于unhashables。
y轴是花费的秒数。
x轴是函数作用的数字。
我用以下理解为无序哈希和有序哈希生成序列:[list(range(x)) + list(range(x)) for x in range(0,1000,10)]
对于有序的不可哈希对象:[[list(range(y)) + list(range(y)) For y in range(x)] For x in range(0,1000,10)]
请注意,在范围内有一个步骤,因为如果没有它,这将花费10倍的时间。也因为在我个人看来,我认为它可能看起来更容易阅读。
还要注意,图例上的键是我试图猜测的函数实现中最重要的部分。至于哪个功能是最好的还是最差的呢?图表说明了一切。
解决了这个问题,下面是图表。
无序Hashables
(放大)
命令Hashables
(放大)
命令Unhashables
(放大)
不幸的是。这里的大多数答案要么不保持顺序,要么太长。这里有一个简单的、有序的答案。
s = [1,2,3,4,5,2,5,6,7,1,3,9,3,5]
x=[]
[x.append(i) for i in s if i not in x]
print(x)
这将得到x,删除重复项,但保留顺序。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录