我想计算两个列表之间的余弦相似度,比如说,列表1是dataSetI,列表2是dataSetII。

假设dataSetI是[3,45,7,2],dataSetII是[2,54,13,15]。列表的长度总是相等的。我想将余弦相似度报告为0到1之间的数。

dataSetI = [3, 45, 7, 2]
dataSetII = [2, 54, 13, 15]

def cosine_similarity(list1, list2):
  # How to?
  pass

print(cosine_similarity(dataSetI, dataSetII))

当前回答

所有答案都非常适合不能使用NumPy的情况。如果可以的话,这里有另一种方法:

def cosine(x, y):
    dot_products = np.dot(x, y.T)
    norm_products = np.linalg.norm(x) * np.linalg.norm(y)
    return dot_products / (norm_products + EPSILON)

还要记住EPSILON = 1e-07,以确保组织安全。

其他回答

我想性能在这里不太重要,但我忍不住。zip()函数完全复制了两个向量(实际上更像是矩阵转置),只是为了以“python”顺序获取数据。计算具体实现的时间会很有趣:

import math
def cosine_similarity(v1,v2):
    "compute cosine similarity of v1 to v2: (v1 dot v2)/{||v1||*||v2||)"
    sumxx, sumxy, sumyy = 0, 0, 0
    for i in range(len(v1)):
        x = v1[i]; y = v2[i]
        sumxx += x*x
        sumyy += y*y
        sumxy += x*y
    return sumxy/math.sqrt(sumxx*sumyy)

v1,v2 = [3, 45, 7, 2], [2, 54, 13, 15]
print(v1, v2, cosine_similarity(v1,v2))

Output: [3, 45, 7, 2] [2, 54, 13, 15] 0.972284251712

这将经历一次提取一个元素的类似c的噪音,但不进行批量数组复制,并在单个for循环中完成所有重要的工作,并使用单个平方根。

ETA:更新打印调用为函数。(最初的版本是Python 2.7,不是3.3。当前在Python 2.7下运行,使用from __future__ import print_function语句。)无论哪种方式,输出都是相同的。

3.0GHz Core 2 Duo上的CPYthon 2.7.3

>>> timeit.timeit("cosine_similarity(v1,v2)",setup="from __main__ import cosine_similarity, v1, v2")
2.4261788514654654
>>> timeit.timeit("cosine_measure(v1,v2)",setup="from __main__ import cosine_measure, v1, v2")
8.794677709375264

所以,在这种情况下,非python的方式要快3.6倍。

你可以使用这个简单的函数来计算余弦相似度:

def cosine_similarity(a, b):
  return sum([i*j for i,j in zip(a, b)])/(math.sqrt(sum([i*i for i in a]))* math.sqrt(sum([i*i for i in b])))

另一个仅基于numpy的版本

from numpy import dot
from numpy.linalg import norm

cos_sim = dot(a, b)/(norm(a)*norm(b))

不使用任何导入

math.sqrt (x)

可以用

x * * 5

如果不使用numpy.dot(),您必须使用列表理解创建自己的dot函数:

def dot(A,B): 
    return (sum(a*b for a,b in zip(A,B)))

然后它只是一个应用余弦相似度公式的简单问题:

def cosine_similarity(a,b):
    return dot(a,b) / ( (dot(a,a) **.5) * (dot(b,b) ** .5) )

这里有一个实现,也适用于矩阵。它的行为完全像sklearn余弦相似度:

def cosine_similarity(a, b):    
    return np.divide(
        np.dot(a, b.T),
        np.linalg.norm(
            a,
            axis=1,
            keepdims=True
        ) 
        @ # matrix multiplication
        np.linalg.norm(
            b,
            axis=1,
            keepdims=True
        ).T
    )

符号@代表矩阵乘法。看到 “at”(@)符号在Python中有什么作用?