我正在努力处理matplotlib中的图边距。我使用下面的代码来生成我的图表:
plt.imshow(g)
c = plt.colorbar()
c.set_label("Number of Slabs")
plt.savefig("OutputToUse.png")
然而,我得到的输出数字在图的两边都有大量的空白。我已经搜索了谷歌并阅读了matplotlib文档,但我似乎找不到如何减少这一点。
我正在努力处理matplotlib中的图边距。我使用下面的代码来生成我的图表:
plt.imshow(g)
c = plt.colorbar()
c.set_label("Number of Slabs")
plt.savefig("OutputToUse.png")
然而,我得到的输出数字在图的两边都有大量的空白。我已经搜索了谷歌并阅读了matplotlib文档,但我似乎找不到如何减少这一点。
当前回答
你所需要的就是
plt.tight_layout()
在输出之前。
除了减少页边距外,这还将所有子图之间的空间紧密分组:
x = [1,2,3]
y = [1,4,9]
import matplotlib.pyplot as plt
fig = plt.figure()
subplot1 = fig.add_subplot(121)
subplot1.plot(x,y)
subplot2 = fig.add_subplot(122)
subplot2.plot(y,x)
fig.tight_layout()
plt.show()
其他回答
对我来说,上面的答案在matplotlib中不起作用。Win7上的__version__ = 1.4.3。因此,如果我们只对图像本身感兴趣(即,如果我们不需要注释、轴、刻度、标题、ylabel等),那么最好是简单地将numpy数组保存为image而不是savefig。
from pylab import *
ax = subplot(111)
ax.imshow(some_image_numpyarray)
imsave('test.tif', some_image_numpyarray)
# or, if the image came from tiff or png etc
RGBbuffer = ax.get_images()[0].get_array()
imsave('test.tif', RGBbuffer)
此外,使用opencv绘图函数(cv2. exe)。Line, cv2.polylines),我们可以直接在numpy数组上做一些绘图。http://docs.opencv.org/2.4/modules/core/doc/drawing_functions.html
你所需要的就是
plt.tight_layout()
在输出之前。
除了减少页边距外,这还将所有子图之间的空间紧密分组:
x = [1,2,3]
y = [1,4,9]
import matplotlib.pyplot as plt
fig = plt.figure()
subplot1 = fig.add_subplot(121)
subplot1.plot(x,y)
subplot2 = fig.add_subplot(122)
subplot2.plot(y,x)
fig.tight_layout()
plt.show()
有时候,plt.tight_layout()不会给我最好的视图或我想要的视图。那为什么不先画任意边距然后再确定边距呢? 因为我们从那里得到了很好的所见即所得。
import matplotlib.pyplot as plt
fig,ax = plt.subplots(figsize=(8,8))
plt.plot([2,5,7,8,5,3,5,7,])
plt.show()
然后将设置粘贴到margin函数,使其永久:
fig,ax = plt.subplots(figsize=(8,8))
plt.plot([2,5,7,8,5,3,5,7,])
fig.subplots_adjust(
top=0.981,
bottom=0.049,
left=0.042,
right=0.981,
hspace=0.2,
wspace=0.2
)
plt.show()
一种自动做到这一点的方法是将bbox_inch ='tight' kwarg转换为plt.savefig。
E.g.
import matplotlib.pyplot as plt
import numpy as np
data = np.arange(3000).reshape((100,30))
plt.imshow(data)
plt.savefig('test.png', bbox_inches='tight')
另一种方法是使用fig.tight_layout()
import matplotlib.pyplot as plt
import numpy as np
xs = np.linspace(0, 1, 20); ys = np.sin(xs)
fig = plt.figure()
axes = fig.add_subplot(1,1,1)
axes.plot(xs, ys)
# This should be called after all axes have been added
fig.tight_layout()
fig.savefig('test.png')
# import pyplot
import matplotlib.pyplot as plt
# your code to plot the figure
# set tight margins
plt.margins(0.015, tight=True)