有几个关于浮点表示法的问题被提交给了SO。例如,十进制数0.1没有精确的二进制表示,因此使用==操作符将其与另一个浮点数进行比较是危险的。我理解浮点表示法背后的原理。

我不明白的是,为什么从数学的角度来看,小数点右边的数字比左边的数字更“特殊”?

例如,数字61.0具有精确的二进制表示,因为任何数字的整数部分总是精确的。但6.10这个数字并不准确。我所做的只是把小数点移了一位突然间我就从精确乌托邦变成了不精确镇。从数学上讲,这两个数字之间不应该有本质差别——它们只是数字。

相比之下,如果我把小数点向另一个方向移动一位,得到数字610,我仍然在Exactopia。我可以继续往这个方向(6100,610000000,610000000000000)它们仍然是完全,完全,完全的。但是一旦小数点越过某个阈值,这些数字就不再精确了。

这是怎么呢

编辑:为了澄清,我不想讨论诸如IEEE之类的行业标准表示,而是坚持我所相信的数学上的“纯粹”方式。以10为基数,位置值为:

... 1000  100   10    1   1/10  1/100 ...

在二进制中,它们将是:

... 8    4    2    1    1/2  1/4  1/8 ...

这些数字也没有任意的限制。位置向左和向右无限增加。


当前回答

在等式中

2^x = y ;  
x = log(y) / log(2)

因此,我想知道我们是否可以有一个二进制的对数制,

 2^1, 2^0, 2^(log(1/2) / log(2)), 2^(log(1/4) / log(2)), 2^(log(1/8) / log(2)),2^(log(1/16) / log(2)) ........

这也许能解决问题,所以如果你想把32.41写成二进制,那就是

2^5 + 2^(log(0.4) / log(2)) + 2^(log(0.01) / log(2))

Or

2^5 + 2^(log(0.41) / log(2))

其他回答

如果你用浮点数做一个足够大的数(它可以做指数),那么小数点前也会不精确。所以我不认为你的问题是完全正确的,因为前提是错误的;移位10并不总是会产生更高的精度,因为在某些情况下,浮点数将不得不使用指数来表示数字的大小,这样也会失去一些精度。

正如我们一直在讨论的,在浮点算术中,十进制0.1不能完美地用二进制表示。

浮点和整数表示形式为所表示的数字提供网格或格子。当完成算术运算时,结果会从网格中脱落,必须通过舍入将其放回网格中。例如二进制网格上的1/10。

如果我们像一位先生建议的那样,使用二进制编码的十进制表示,我们能在网格上保持数字吗?

有理数的数量是无限的,而用来表示有理数的比特的数量是有限的。见http://en.wikipedia.org/wiki/Floating_point # Accuracy_problems。

数字61.0确实有一个精确的浮点运算——但这并不是对所有整数都适用。如果您编写了一个循环,将一个双精度浮点数和一个64位整数都加了1,最终您将达到这样的情况:64位整数完美地表示一个数字,而浮点数却不能——因为没有足够的有效位。

只是在小数点右边求近似值要容易得多。如果你把所有的数字都写成二进制浮点数,这就更有意义了。

另一种思考的方式是,当你注意到61.0完全可以用10为底表示时,移动小数点并不会改变这一点,你是在执行10的幂乘法(10^1,10^-1)。在浮点数中,乘以2的幂并不影响数字的精度。试着用61.0反复除以3来说明一个非常精确的数字是如何失去它的精确表示的。

我不想重复其他20个答案的总结,所以我只简单地回答:

答案在你的内容中:

为什么以两为基数的数字不能精确地表示一定的比率?

出于同样的原因,小数不足以表示某些比率,即分母中包含除2或5之外的素数因子的不可约分数,至少在其小数展开的尾数中总是有一个不确定的字符串。

为什么十进制数不能精确地用二进制表示?

This question at face value is based on a misconception regarding values themselves. No number system is sufficient to represent any quantity or ratio in a manner that the thing itself tells you that it is both a quantity, and at the same time also gives the interpretation in and of itself about the intrinsic value of the representation. As such, all quantitative representations, and models in general, are symbolic and can only be understood a posteriori, namely, after one has been taught how to read and interpret these numbers.

由于模型是主观的东西,在反映现实的范围内是正确的,我们不需要严格地将二进制字符串解释为2的负幂和正幂的和。相反,我们可以观察到,我们可以创建一组任意的符号,这些符号以2为基底或任何其他基底来精确地表示任何数字或比例。只要考虑一下,我们可以用一个词甚至一个符号来指代无穷大,而不需要“显示无穷大”本身。

As an example, I am designing a binary encoding for mixed numbers so that I can have more precision and accuracy than an IEEE 754 float. At the time of writing this, the idea is to have a sign bit, a reciprocal bit, a certain number of bits for a scalar to determine how much to "magnify" the fractional portion, and then the remaining bits are divided evenly between the integer portion of a mixed number, and the latter a fixed-point number which, if the reciprocal bit is set, should be interpreted as one divided by that number. This has the benefit of allowing me to represent numbers with infinite decimal expansions by using their reciprocals which do have terminating decimal expansions, or alternatively, as a fraction directly, potentially as an approximation, depending on my needs.