有人知道如何在Python中从多维数组中提取列吗?


当前回答

array = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16]]

col1 = [val[1] for val in array]
col2 = [val[2] for val in array]
col3 = [val[3] for val in array]
col4 = [val[4] for val in array]
print(col1)
print(col2)
print(col3)
print(col4)

Output:
[1, 5, 9, 13]
[2, 6, 10, 14]
[3, 7, 11, 15]
[4, 8, 12, 16]

其他回答

假设我们有nxm矩阵(n行m列)5行4列

matrix = [[1,2,3,4],[5,6,7,8],[9,10,11,12],[13,14,15,16],[17,18,19,20]]

要在python中提取列,我们可以像这样使用列表推导式

[ [row[i] for row in matrix] for in range(4) ]

你可以用矩阵的列数来替换4。 结果是

,10,14,18,5,9,13,17 [[1], [2], [3,7,11,15,19], [4,8,12,16,20]]

如果你有一个数组

a = [[1, 2], [2, 3], [3, 4]]

然后像这样提取第一列:

[row[0] for row in a]

结果是这样的:

[1, 2, 3]

我认为你想从一个数组中提取一个列,比如下面的数组

import numpy as np
A = np.array([[1,2,3,4],[5,6,7,8],[9,10,11,12]])

现在如果你想要得到格式中的第三列

D=array[[3],
[7],
[11]]

然后你需要首先把数组变成一个矩阵

B=np.asmatrix(A)
C=B[:,2]
D=asarray(C)

现在你可以做基于元素的计算就像你在excel中做的一样。

>>> import numpy as np
>>> A = np.array([[1,2,3,4],[5,6,7,8]])

>>> A
array([[1, 2, 3, 4],
    [5, 6, 7, 8]])

>>> A[:,2] # returns the third columm
array([3, 7])

参见:"numpy。“Arange”和“重塑”来分配内存

示例:(用矩阵(3x4)的形状分配数组)

nrows = 3
ncols = 4
my_array = numpy.arange(nrows*ncols, dtype='double')
my_array = my_array.reshape(nrows, ncols)

你也可以用这个:

values = np.array([[1,2,3],[4,5,6]])
values[...,0] # first column
#[1,4]

注意:这对于内置数组和未对齐的数组无效(例如np.array([[1,2,3],[4,5,6,7]]))