我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

使用分支和定界的数学整数线性规划

As it has already been mentioned, this problem can be solved using integer linear programming (which is NP-Hard). Mathematica already has ILP built in. "To solve an integer linear programming problem Mathematica first solves the equational constraints, reducing the problem to one containing inequality constraints only. Then it uses lattice reduction techniques to put the inequality system in a simpler form. Finally, it solves the simplified optimization problem using a branch-and-bound method." [see Constrained Optimization Tutorial in Mathematica.. ]

我写了下面的代码,利用ILP库的Mathematica。它的速度快得惊人。

solveMatrixBombProblem[problem_, r_, c_] := 
 Module[{}, 
  bombEffect[x_, y_, m_, n_] := 
   Table[If[(i == x || i == x - 1 || i == x + 1) && (j == y || 
        j == y - 1 || j == y + 1), 1, 0], {i, 1, m}, {j, 1, n}];
  bombMatrix[m_, n_] := 
   Transpose[
    Table[Table[
      Part[bombEffect[(i - Mod[i, n])/n + 1, Mod[i, n] + 1, m, 
        n], (j - Mod[j, n])/n + 1, Mod[j, n] + 1], {j, 0, 
       m*n - 1}], {i, 0, m*n - 1}]];
  X := x /@ Range[c*r];
  sol = Minimize[{Total[X], 
     And @@ Thread[bombMatrix[r, c].X >= problem] && 
      And @@ Thread[X >= 0] && Total[X] <= 10^100 && 
      Element[X, Integers]}, X];
  Print["Minimum required bombs = ", sol[[1]]];
  Print["A possible solution = ", 
   MatrixForm[
    Table[x[c*i + j + 1] /. sol[[2]], {i, 0, r - 1}, {j, 0, 
      c - 1}]]];]

对于问题中提供的示例:

solveMatrixBombProblem[{2, 3, 4, 7, 1, 1, 5, 2, 6, 2, 4, 3, 4, 2, 1, 2, 1, 2, 4, 1, 3, 1, 3, 4, 1, 2, 1, 4, 3, 2, 6, 9, 1, 6, 4}, 7, 5]

输出

对于那些用贪婪算法读这篇文章的人

在下面这个10x10的问题上试试你的代码:

5   20  7   1   9   8   19  16  11  3  
17  8   15  17  12  4   5   16  8   18  
4   19  12  11  9   7   4   15  14  6  
17  20  4   9   19  8   17  2   10  8  
3   9   10  13  8   9   12  12  6   18  
16  16  2   10  7   12  17  11  4   15  
11  1   15  1   5   11  3   12  8   3  
7   11  16  19  17  11  20  2   5   19  
5   18  2   17  7   14  19  11  1   6  
13  20  8   4   15  10  19  5   11  12

这里用逗号分隔:

5, 20, 7, 1, 9, 8, 19, 16, 11, 3, 17, 8, 15, 17, 12, 4, 5, 16, 8, 18, 4, 19, 12, 11, 9, 7, 4, 15, 14, 6, 17, 20, 4, 9, 19, 8, 17, 2, 10, 8, 3, 9, 10, 13, 8, 9, 12, 12, 6, 18, 16, 16, 2, 10, 7, 12, 17, 11, 4, 15, 11, 1, 15, 1, 5, 11, 3, 12, 8, 3, 7, 11, 16, 19, 17, 11, 20, 2, 5, 19, 5, 18, 2, 17, 7, 14, 19, 11, 1, 6, 13, 20, 8, 4, 15, 10, 19, 5, 11, 12

对于这个问题,我的解决方案包含208个炸弹。这里有一个可能的解决方案(我能够在大约12秒内解决这个问题)。

作为一种测试Mathematica产生结果的方法,看看你的贪婪算法是否能做得更好。

其他回答

使用分支和定界的数学整数线性规划

As it has already been mentioned, this problem can be solved using integer linear programming (which is NP-Hard). Mathematica already has ILP built in. "To solve an integer linear programming problem Mathematica first solves the equational constraints, reducing the problem to one containing inequality constraints only. Then it uses lattice reduction techniques to put the inequality system in a simpler form. Finally, it solves the simplified optimization problem using a branch-and-bound method." [see Constrained Optimization Tutorial in Mathematica.. ]

我写了下面的代码,利用ILP库的Mathematica。它的速度快得惊人。

solveMatrixBombProblem[problem_, r_, c_] := 
 Module[{}, 
  bombEffect[x_, y_, m_, n_] := 
   Table[If[(i == x || i == x - 1 || i == x + 1) && (j == y || 
        j == y - 1 || j == y + 1), 1, 0], {i, 1, m}, {j, 1, n}];
  bombMatrix[m_, n_] := 
   Transpose[
    Table[Table[
      Part[bombEffect[(i - Mod[i, n])/n + 1, Mod[i, n] + 1, m, 
        n], (j - Mod[j, n])/n + 1, Mod[j, n] + 1], {j, 0, 
       m*n - 1}], {i, 0, m*n - 1}]];
  X := x /@ Range[c*r];
  sol = Minimize[{Total[X], 
     And @@ Thread[bombMatrix[r, c].X >= problem] && 
      And @@ Thread[X >= 0] && Total[X] <= 10^100 && 
      Element[X, Integers]}, X];
  Print["Minimum required bombs = ", sol[[1]]];
  Print["A possible solution = ", 
   MatrixForm[
    Table[x[c*i + j + 1] /. sol[[2]], {i, 0, r - 1}, {j, 0, 
      c - 1}]]];]

对于问题中提供的示例:

solveMatrixBombProblem[{2, 3, 4, 7, 1, 1, 5, 2, 6, 2, 4, 3, 4, 2, 1, 2, 1, 2, 4, 1, 3, 1, 3, 4, 1, 2, 1, 4, 3, 2, 6, 9, 1, 6, 4}, 7, 5]

输出

对于那些用贪婪算法读这篇文章的人

在下面这个10x10的问题上试试你的代码:

5   20  7   1   9   8   19  16  11  3  
17  8   15  17  12  4   5   16  8   18  
4   19  12  11  9   7   4   15  14  6  
17  20  4   9   19  8   17  2   10  8  
3   9   10  13  8   9   12  12  6   18  
16  16  2   10  7   12  17  11  4   15  
11  1   15  1   5   11  3   12  8   3  
7   11  16  19  17  11  20  2   5   19  
5   18  2   17  7   14  19  11  1   6  
13  20  8   4   15  10  19  5   11  12

这里用逗号分隔:

5, 20, 7, 1, 9, 8, 19, 16, 11, 3, 17, 8, 15, 17, 12, 4, 5, 16, 8, 18, 4, 19, 12, 11, 9, 7, 4, 15, 14, 6, 17, 20, 4, 9, 19, 8, 17, 2, 10, 8, 3, 9, 10, 13, 8, 9, 12, 12, 6, 18, 16, 16, 2, 10, 7, 12, 17, 11, 4, 15, 11, 1, 15, 1, 5, 11, 3, 12, 8, 3, 7, 11, 16, 19, 17, 11, 20, 2, 5, 19, 5, 18, 2, 17, 7, 14, 19, 11, 1, 6, 13, 20, 8, 4, 15, 10, 19, 5, 11, 12

对于这个问题,我的解决方案包含208个炸弹。这里有一个可能的解决方案(我能够在大约12秒内解决这个问题)。

作为一种测试Mathematica产生结果的方法,看看你的贪婪算法是否能做得更好。

这将是一个贪婪的方法:

计算一个阶为n X m的“score”矩阵,其中score[i][j]是如果位置(i,j)被炸毁,则矩阵中各点的总扣除额。(一个点的最高分数是9分,最低分数是0分) 逐行移动,找到并选择第一个得分最高的位置(例如(i,j))。 炸弹(i, j)。增加炸弹数量。 如果原矩阵的所有元素都不为零,则转到1。

但我怀疑这是否是最佳解决方案。

编辑:

我上面提到的贪心方法,虽然有效,但很可能不能给我们最优的解决方案。所以我想应该添加一些DP的元素。

我想我们可以同意,在任何时候,具有最高“分数”(分数[I][j] =总扣分,如果(I,j)被炸)的位置之一必须被瞄准。从这个假设开始,下面是新的方法:

NumOfBombs(M):(返回所需的最小炸弹数量)

给定一个矩阵M (n X M),如果M中的所有元素都为0,则返回0。 计算“分数”矩阵M。 设k个不同的位置P1 P2…Pk (1 <= k <= n*m),为m中得分最高的位置。 return (1 + min(NumOfBombs(M1), NumOfBombs(M2),…, NumOfBombs(Mk)) M1, M2,……,Mk是我们轰炸位置P1, P2,…, Pk。

此外,如果我们想在此基础上破坏位置的顺序,我们必须跟踪“min”的结果。

永远不要轰炸边界(除非正方形没有边界以外的邻居) 零角落。 到零角,将对角线上一个正方形的角的值降低(唯一的非边界邻居) 这会产生新的角落。见第2节

编辑:没有注意到Kostek提出了几乎相同的方法,所以现在我提出了更强烈的主张: 如果要清除的角总是选择在最外层,那么它是最优的。

在OP的例子中:在除5之外的任何地方掉落2(1+1或2)并不会导致掉落5所能击中的任何方块。所以我们必须在5上加上2(在左下角加上6…)

在这之后,只有一种方法可以清除(在左上角)角落里原本是1(现在是0)的东西,那就是在B3上删除0(类似excel的符号)。 等等。

只有在清除了整个A和E列以及1和7行之后,才开始更深一层的清理。

考虑只清除那些故意清除的角落,清除0值的角落不需要花费任何成本,并且简化了思考。

因为所有以这种方式投掷的炸弹都必须被投掷,并且这将导致清除战场,这是最佳解决方案。


睡了一觉后,我意识到这不是真的。 考虑

  ABCDE    
1 01000
2 10000
3 00000
4 00000

我的方法是在B3和C2上投放炸弹,而在B2上投放炸弹就足够了

你可以使用状态空间规划。 例如,使用A*(或其变体之一)加上启发式f = g + h,如下所示:

G:到目前为止投下的炸弹数量 H:网格中所有值的总和除以9(这是最好的结果,意味着我们有一个可接受的启发式)

这可以用深度为O(3^(n))的树来求解。其中n是所有平方和。

首先考虑用O(9^n)树来解决问题是很简单的,只需考虑所有可能的爆炸位置。有关示例,请参阅Alfe的实现。

接下来我们意识到,我们可以从下往上轰炸,仍然得到一个最小的轰炸模式。

Start from the bottom left corner. Bomb it to oblivion with the only plays that make sense (up and to the right). Move one square to the right. While the target has a value greater than zero, consider each of the 2 plays that make sense (straight up or up and to the right), reduce the value of the target by one, and make a new branch for each possibility. Move another to the right. While the target has a value greater than zero, consider each of the 3 plays that make sense (up left, up, and up right), reduce the value of the target by one, and make a new branch for each possibility. Repeat steps 5 and 6 until the row is eliminated. Move up a row and repeat steps 1 to 7 until the puzzle is solved.

这个算法是正确的,因为

有必要在某一时刻完成每一行。 完成一行总是需要一个游戏,一个在上面,一个在下面,或者在这一行内。 选择在未清除的最低行之上的玩法总是比选择在该行之上或该行之下的玩法更好。

在实践中,这个算法通常会比它的理论最大值做得更好,因为它会定期轰炸邻居并减少搜索的大小。如果我们假设每次轰炸都会减少4个额外目标的价值,那么我们的算法将运行在O(3^(n/4))或大约O(1.3^n)。

Because this algorithm is still exponential, it would be wise to limit the depth of the search. We might limit the number of branches allowed to some number, X, and once we are this deep we force the algorithm to choose the best path it has identified so far (the one that has the minimum total board sum in one of its terminal leaves). Then our algorithm is guaranteed to run in O(3^X) time, but it is not guaranteed to get the correct answer. However, we can always increase X and test empirically if the trade off between increased computation and better answers is worthwhile.