我有一个nxm个由非负整数组成的矩阵。例如:

2 3 4 7 1
1 5 2 6 2
4 3 4 2 1
2 1 2 4 1
3 1 3 4 1
2 1 4 3 2
6 9 1 6 4

“投下炸弹”会使目标细胞及其所有八个邻居的数量减少一个,直到最小值为零。

x x x 
x X x
x x x

什么样的算法可以确定将所有细胞减少到零所需的最少炸弹数量?

B选项(因为我不是一个细心的读者)

事实上,问题的第一个版本并不是我要寻找的答案。我没有仔细阅读整个任务,有额外的约束条件,让我们说:

那么简单的问题是,当行中的序列必须是非递增的:

8 7 6 6 5是可能的输入序列

7 8 5 5 2是不可能的,因为7 -> 8在一个序列中增长。

也许为“简单”的问题找到答案会有助于为更难的问题找到解决方案。

PS:我相信当我们有几个相同的情况需要最少的炸弹来清除上面的线时,我们会选择在“左侧”使用最多炸弹的一个。还有什么证据是正确的吗?


当前回答

这将是一个贪婪的方法:

计算一个阶为n X m的“score”矩阵,其中score[i][j]是如果位置(i,j)被炸毁,则矩阵中各点的总扣除额。(一个点的最高分数是9分,最低分数是0分) 逐行移动,找到并选择第一个得分最高的位置(例如(i,j))。 炸弹(i, j)。增加炸弹数量。 如果原矩阵的所有元素都不为零,则转到1。

但我怀疑这是否是最佳解决方案。

编辑:

我上面提到的贪心方法,虽然有效,但很可能不能给我们最优的解决方案。所以我想应该添加一些DP的元素。

我想我们可以同意,在任何时候,具有最高“分数”(分数[I][j] =总扣分,如果(I,j)被炸)的位置之一必须被瞄准。从这个假设开始,下面是新的方法:

NumOfBombs(M):(返回所需的最小炸弹数量)

给定一个矩阵M (n X M),如果M中的所有元素都为0,则返回0。 计算“分数”矩阵M。 设k个不同的位置P1 P2…Pk (1 <= k <= n*m),为m中得分最高的位置。 return (1 + min(NumOfBombs(M1), NumOfBombs(M2),…, NumOfBombs(Mk)) M1, M2,……,Mk是我们轰炸位置P1, P2,…, Pk。

此外,如果我们想在此基础上破坏位置的顺序,我们必须跟踪“min”的结果。

其他回答

我也有28招。我使用了两个测试来确定最佳下一步:第一个是产生最小棋盘和的一步。其次,对于相等的和,产生最大密度的移动,定义为:

number-of-zeros / number-of-groups-of-zeros

我是哈斯克尔。“解决板”显示引擎的解决方案。你可以通过输入“main”来玩游戏,然后输入目标点,“best”作为推荐,或者“quit”退出。

输出: *主>解决板 [(4, 4),(3、6),(3),(2,2),(2,2),(4、6)(4、6),(2,6),(2),(4,2)(2,6),(3),(4,3)(2,6)(4,2)(4、6)(4、6),(3、6),(2,6)(2,6)(2、4)(2、4)(2,6),(6),(4,2)(4,2)(4,2)(4,2)]

import Data.List
import Data.List.Split
import Data.Ord
import Data.Function(on)

board = [2,3,4,7,1,
         1,5,2,6,2,
         4,3,4,2,1,
         2,1,2,4,1,
         3,1,3,4,1,
         2,1,4,3,2,
         6,9,1,6,4]

n = 5
m = 7

updateBoard board pt =
  let x = fst pt
      y = snd pt
      precedingLines = replicate ((y-2) * n) 0
      bomb = concat $ replicate (if y == 1
                                    then 2
                                    else min 3 (m+2-y)) (replicate (x-2) 0 
                                                         ++ (if x == 1 
                                                                then [1,1]
                                                                else replicate (min 3 (n+2-x)) 1)
                                                                ++ replicate (n-(x+1)) 0)
  in zipWith (\a b -> max 0 (a-b)) board (precedingLines ++ bomb ++ repeat 0)

showBoard board = 
  let top = "   " ++ (concat $ map (\x -> show x ++ ".") [1..n]) ++ "\n"
      chunks = chunksOf n board
  in putStrLn (top ++ showBoard' chunks "" 1)
       where showBoard' []     str count = str
             showBoard' (x:xs) str count =
               showBoard' xs (str ++ show count ++ "." ++ show x ++ "\n") (count+1)

instances _ [] = 0
instances x (y:ys)
  | x == y    = 1 + instances x ys
  | otherwise = instances x ys

density a = 
  let numZeros = instances 0 a
      groupsOfZeros = filter (\x -> head x == 0) (group a)
  in if null groupsOfZeros then 0 else numZeros / fromIntegral (length groupsOfZeros)

boardDensity board = sum (map density (chunksOf n board))

moves = [(a,b) | a <- [2..n-1], b <- [2..m-1]]               

bestMove board = 
  let lowestSumMoves = take 1 $ groupBy ((==) `on` snd) 
                              $ sortBy (comparing snd) (map (\x -> (x, sum $ updateBoard board x)) (moves))
  in if null lowestSumMoves
        then (0,0)
        else let lowestSumMoves' = map (\x -> fst x) (head lowestSumMoves) 
             in fst $ head $ reverse $ sortBy (comparing snd) 
                (map (\x -> (x, boardDensity $ updateBoard board x)) (lowestSumMoves'))   

solve board = solve' board [] where
  solve' board result
    | sum board == 0 = result
    | otherwise      = 
        let best = bestMove board 
        in solve' (updateBoard board best) (result ++ [best])

main :: IO ()
main = mainLoop board where
  mainLoop board = do 
    putStrLn ""
    showBoard board
    putStr "Pt: "
    a <- getLine
    case a of 
      "quit"    -> do putStrLn ""
                      return ()
      "best"    -> do putStrLn (show $ bestMove board)
                      mainLoop board
      otherwise -> let ws = splitOn "," a
                       pt = (read (head ws), read (last ws))
                   in do mainLoop (updateBoard board pt)

如果你想要绝对最优解来清理棋盘,你将不得不使用经典的回溯,但如果矩阵非常大,它将需要很长时间才能找到最佳解,如果你想要一个“可能的”最优解,你可以使用贪婪算法,如果你需要帮助写算法,我可以帮助你

现在想想,这是最好的办法。在那里制作另一个矩阵,存储通过投掷炸弹而移除的点,然后选择点数最多的单元格,并在那里投掷炸弹更新点数矩阵,然后继续。例子:

2 3 5 -> (2+(1*3)) (3+(1*5)) (5+(1*3))
1 3 2 -> (1+(1*4)) (3+(1*7)) (2+(1*4))
1 0 2 -> (1+(1*2)) (0+(1*5)) (2+(1*2))

对于每个相邻的高于0的单元格,单元格值+1

这是部分答案,我试图找到一个下界和上界,可能是炸弹的数量。

在3x3和更小的板上,解决方案通常是编号最大的单元。

在大于4x4的板中,第一个明显的下界是角的和:

*2* 3  7 *1*
 1  5  6  2
 2  1  3  2
*6* 9  6 *4*

无论你如何安排炸弹,都不可能用少于2+1+6+4=13个炸弹来清除这个4x4板。

在其他回答中已经提到,将炸弹放置在第二个角落以消除角落并不比将炸弹放置在角落本身更糟糕,所以考虑到棋盘:

*2* 3  4  7 *1*
 1  5  2  6  2
 4  3  4  2  1
 2  1  2  4  1
 3  1  3  4  1
 2  1  4  3  2
*6* 9  1  6 *4*

我们可以通过在第二个角上放置炸弹来将角归零,从而得到一个新的板:

 0  1  1  6  0
 0  3  0  5  1
 2  1  1  1  0
 2  1  2  4  1
 0  0  0  0  0
 0  0  0  0  0
 0  3  0  2  0

到目前为止一切顺利。我们需要13枚炸弹才能清空角落。

现在观察下面标记的数字6、4、3和2:

 0  1  1 *6* 0
 0  3  0  5  1
 2  1  1  1  0
*2* 1  2 *4* 1
 0  0  0  0  0
 0  0  0  0  0
 0 *3* 0  2  0

我们无法使用一枚炸弹去轰炸任何两个细胞,所以最小炸弹数量增加了6+4+3+2,所以再加上我们用来清除角落的炸弹数量,我们得到这张地图所需的最小炸弹数量变成了28枚炸弹。用少于28个炸弹是不可能清除这张地图的,这是这张地图的下限。

可以用贪心算法建立上界。其他答案表明,贪婪算法产生的解决方案使用28个炸弹。因为我们之前已经证明了没有一个最优解可以拥有少于28个炸弹,所以28个炸弹确实是一个最优解。

当贪心和我上面提到的寻找最小界的方法不收敛时,我猜你必须回去检查所有的组合。

求下界的算法如下:

选一个数值最大的元素,命名为P。 将所有距离P和P本身两步远的单元格标记为不可拾取。 将P添加到最小值列表中。 重复步骤1,直到所有单元格都不可拾取。 对最小值列表求和得到下界。

这是另一个想法:

让我们先给黑板上的每个空格分配一个权重,计算在那里扔炸弹会减少多少数字。如果这个空间有一个非零数,它就得到一个点,如果它的相邻空间有一个非零数,它就得到一个额外的点。如果这是一个1000 * 1000的网格,我们为这100万个空间中的每一个都分配了权重。

然后根据权重对列表中的空格进行排序,并轰炸权重最高的空格。可以这么说,这是我们最大的收获。

在此之后,更新每个空间的重量是受炸弹的影响。这是你轰炸的空间,和它相邻的空间,以及它们相邻的空间。换句话说,任何空间的价值都可能因为爆炸而减少为零,或者相邻空间的价值减少为零。

然后,根据权重重新排序列表空间。由于轰炸只改变了一小部分空间的权重,因此不需要使用整个列表,只需在列表中移动这些空间。

轰炸新的最高权重空间,并重复上述步骤。

这保证了每次轰炸都能减少尽可能多的空格(基本上,它会击中尽可能少的已经为零的空格),所以这是最优的,除非它们的权重是相同的。所以你可能需要做一些回溯跟踪,当有一个平局的顶部重量。不过,只有最高重量的领带重要,其他领带不重要,所以希望没有太多的回溯。

Edit: Mysticial's counterexample below demonstrates that in fact this isn't guaranteed to be optimal, regardless of ties in weights. In some cases reducing the weight as much as possible in a given step actually leaves the remaining bombs too spread out to achieve as high a cummulative reduction after the second step as you could have with a slightly less greedy choice in the first step. I was somewhat mislead by the notion that the results are insensitive to the order of bombings. They are insensitive to the order in that you could take any series of bombings and replay them from the start in a different order and end up with the same resulting board. But it doesn't follow from that that you can consider each bombing independently. Or, at least, each bombing must be considered in a way that takes into account how well it sets up the board for subsequent bombings.

在这里,线性规划方法似乎非常有用。

设Pm x n为包含位置值的矩阵:

现在定义一个炸弹矩阵B(x, y)m x n,其中1≤x≤m, 1≤y≤n如下所示

以这样一种方式

例如:

所以我们正在寻找一个矩阵Bm x n = [bij]

可以定义为炸弹矩阵的和: (qij将是我们在pij位置投放的炸弹数量) pij - bij≤0(为了更简洁,我们称之为P - B≤0)

而且,B应该使和最小。

我们也可以把B写成前面的丑矩阵:

由于P - B≤0(即P≤B),我们得到了如下线性不等式系统:

qmn x1定义为

PMN x 1定义为

我们可以说我们有一个方程组是smnxmn这个矩阵要倒转来解方程组。我自己没有扩展它,但我相信在代码中应该很容易做到。

现在,我们有一个最小的问题可以表述为

I believe it is something easy, almost trivial to be solved with something like the simplex algorithm (there is this rather cool doc about it). However, I do know almost no linear programming (I will take a course about it on Coursera but it is just in the future...), I had some headaches trying to understand it and I have a huge freelance job to finish so I just give up here. It can be that I did something wrong at some point, or that it can't go any further, but I believe this path can eventually lead to the solution. Anyway, I am anxious for your feedback.

(特别感谢这个神奇的网站从LaTeX表达式创建图片)